Trapping and binding by dephasing
- URL: http://arxiv.org/abs/2109.13484v2
- Date: Sat, 23 Apr 2022 08:53:47 GMT
- Title: Trapping and binding by dephasing
- Authors: Kaustav Mukherjee, Siddhartha Poddar, Sebastian W\"uster
- Abstract summary: We show that both can arise solely from spatially dependent dephasing, the simplest type of decoherence.
For a single particle, we demonstrate a quantum particle-in-the-box based on dephasing.
For two particles, we demonstrate their binding despite repulsive interactions, if their molecular states are dephased at large separations only.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The binding and trapping of particles usually rely on conservative forces,
described by unitary quantum dynamics. We show that both can also arise solely
from spatially dependent dephasing, the simplest type of decoherence. This can
be based on continuous weak position measurements in only selected regions of
space, for which we propose a practical realisation. For a single particle, we
demonstrate a quantum particle-in-the-box based on dephasing. For two
particles, we demonstrate their binding despite repulsive interactions, if
their molecular states are dephased at large separations only. Both mechanisms
are experimentally accessible, as we show for an example with Rydberg atoms in
a cold gas background.
Related papers
- Quantum Delocalization of a Levitated Nanoparticle [0.0]
We prepare a delocalized state of a levitating solid-state nanosphere with coherence length exceeding the zero-point motion.
Our work is a stepping stone towards the generation of delocalization scales comparable to the object size.
arXiv Detail & Related papers (2024-08-02T13:36:42Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - On the Preservation and Manifestation of Quantum Entanglement [0.0]
Bell experiments have confirmed that quantum entanglement is an inseparable correlation but there is no faster-than-light influence when a local measurement is performed.
We show here that even though the inseparable correlation may be initially created by previous physical interaction between the two particles, the preservation and manifestation of such inseparable correlation are achieved through extremizing an information metric.
arXiv Detail & Related papers (2023-11-10T07:33:13Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Exploring helical phases of matter in bosonic ladders [0.0]
Strongly correlated helical states are known to appear for specific ratios of the particle and magnetic flux densities.
We show that one of them can be accessed in systems with two-species hardcore bosons and on-site repulsions only.
arXiv Detail & Related papers (2020-10-06T14:09:16Z) - Two sites coherence and visibility [0.0]
Wave-particle duality and the superposition of quantum mechanical states furnish quantum mechanics with unique features.
The two principles are responsible for the observation of the interference effects of quantum particles such as electrons, atoms and molecules.
arXiv Detail & Related papers (2020-06-12T05:06:37Z) - Interaction-induced topological properties of two bosons in flat-band
systems [0.0]
We show how interaction-induced hopping can be tuned to obtain a variety of two-body topological states.
In particular, we consider two interacting bosons loaded into the orbital angular momentum $l=1$ states of a diamond-chain lattice.
We identify a set of doubly localized two-boson flat-band states that give rise to a special instance of Aharonov-Bohm cages for arbitrary interactions.
arXiv Detail & Related papers (2020-05-21T17:44:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.