論文の概要: Unsupervised Diffeomorphic Surface Registration and Non-Linear Modelling
- arxiv url: http://arxiv.org/abs/2109.13630v1
- Date: Tue, 28 Sep 2021 11:47:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 20:35:58.813773
- Title: Unsupervised Diffeomorphic Surface Registration and Non-Linear Modelling
- Title(参考訳): 教師なし二相曲面登録と非線形モデリング
- Authors: Balder Croquet, Daan Christiaens, Seth M. Weinberg, Michael Bronstein,
Dirk Vandermeulen, Peter Claes
- Abstract要約: 低次元確率変形モデル(PDM)を内包する3次元曲面の1段階登録モデルを提案する。
変形は、指数層を用いて微分同相に制約される。
1段階の登録モデルは反復的手法に対してベンチマークされ、高いコンパクト性に適合する形状でわずかに低い性能で取引される。
- 参考スコア(独自算出の注目度): 4.761477900658674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Registration is an essential tool in image analysis. Deep learning based
alternatives have recently become popular, achieving competitive performance at
a faster speed. However, many contemporary techniques are limited to volumetric
representations, despite increased popularity of 3D surface and shape data in
medical image analysis. We propose a one-step registration model for 3D
surfaces that internalises a lower dimensional probabilistic deformation model
(PDM) using conditional variational autoencoders (CVAE). The deformations are
constrained to be diffeomorphic using an exponentiation layer. The one-step
registration model is benchmarked against iterative techniques, trading in a
slightly lower performance in terms of shape fit for a higher compactness. We
experiment with two distance metrics, Chamfer distance (CD) and Sinkhorn
divergence (SD), as specific distance functions for surface data in real-world
registration scenarios. The internalised deformation model is benchmarked
against linear principal component analysis (PCA) achieving competitive results
and improved generalisability from lower dimensions.
- Abstract(参考訳): 登録は画像解析に欠かせないツールである。
ディープラーニングベースの代替手段が最近人気となり、より高速で競争力のあるパフォーマンスを実現している。
しかし, 医用画像解析における3次元表面形状データの普及にもかかわらず, 多くの現代技術はボリューム表現に限られている。
本研究では,条件付き可変オートエンコーダ (CVAE) を用いた低次元確率変形モデル (PDM) を内包する3次元表面のワンステップ登録モデルを提案する。
変形は、指数層を用いて微分同相に制約される。
1段階の登録モデルは反復的手法に対してベンチマークされ、よりコンパクトな形状で若干低い性能で取引される。
実世界の登録シナリオにおける表面データに対する特定の距離関数として,Chamfer distance (CD) と Sinkhorn divergence (SD) の2つの距離指標を実験した。
内部変形モデルを線形主成分分析 (PCA) と比較し, 競争結果の達成と低次元からの一般化性の向上を図った。
関連論文リスト
- Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration [2.814748676983944]
局所球面ユークリッド3次元等分散特性をSE(3)メッセージパッシングに基づく伝搬により埋め込んだグラフニューラルネットワークモデルを提案する。
我々のモデルは、主に記述モジュール、同変グラフ層、類似性、最終的な回帰層から構成される。
3DMatchおよびKITTIデータセットで行った実験は、最先端のアプローチと比較して、我々のモデルの魅力的で堅牢な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T06:48:01Z) - DiffusionPCR: Diffusion Models for Robust Multi-Step Point Cloud
Registration [73.37538551605712]
ポイントクラウド登録(PCR)は、2つのポイントクラウド間の相対的な厳密な変換を推定する。
本稿では, PCR を拡散確率過程として定式化し, ノイズ変換を基礎的真理にマッピングする。
実験ではDiffusionPCRの有効性を示し,3Dおよび3DLoMatchに対する最先端の登録リコール率(95.3%/81.6%)を得た。
論文 参考訳(メタデータ) (2023-12-05T18:59:41Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
画像やスキャンに適合する3次元人体モデルのための新しい最適化手法を提案する。
われわれのアプローチは、非常に異なる体型を持つ服を着た人々の基盤となる身体を捉えることができ、最先端技術と比べて大きな改善を達成できる。
LVDはまた、人間と手の3次元モデル適合にも適用でき、よりシンプルで高速な方法でSOTAに大きな改善が示される。
論文 参考訳(メタデータ) (2022-05-12T17:55:51Z) - Probabilistic Registration for Gaussian Process 3D shape modelling in
the presence of extensive missing data [63.8376359764052]
本稿では,ガウス過程の定式化に基づく形状適合/登録手法を提案する。
様々な変換を持つ2次元の小さなデータセットと耳の3次元データセットの両方で実験が行われる。
論文 参考訳(メタデータ) (2022-03-26T16:48:27Z) - Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation [29.430404703883084]
本稿では,多人数の3Dポーズ推定問題に対処する新しいDASモデルを提案する。
提案するDASモデルでは,3次元カメラ空間における人物位置と人体関節をワンパスで同時に位置決めする。
CMU Panoptic と MuPoTS-3D のベンチマークに関する総合的な実験は、提案したDASモデルの優れた効率を実証している。
論文 参考訳(メタデータ) (2022-03-15T07:30:27Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - Shape My Face: Registering 3D Face Scans by Surface-to-Surface
Translation [75.59415852802958]
Shape-My-Face (SMF) は、改良されたポイントクラウドエンコーダ、新しい視覚的注意機構、スキップ接続付きグラフ畳み込みデコーダ、特殊口モデルに基づく強力なエンコーダデコーダアーキテクチャである。
私たちのモデルは、トポロジカルにサウンドメッシュを最小限の監視で提供し、より高速なトレーニング時間を提供し、訓練可能なパラメータを桁違いに減らし、ノイズに強く、以前は見られないデータセットに一般化することができます。
論文 参考訳(メタデータ) (2020-12-16T20:02:36Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。