論文の概要: Adversarial Regression with Doubly Non-negative Weighting Matrices
- arxiv url: http://arxiv.org/abs/2109.14875v1
- Date: Thu, 30 Sep 2021 06:41:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-02 03:18:08.640825
- Title: Adversarial Regression with Doubly Non-negative Weighting Matrices
- Title(参考訳): 二重非負重み行列による逆回帰
- Authors: Tam Le and Truyen Nguyen and Makoto Yamada and Jose Blanchet and Viet
Anh Nguyen
- Abstract要約: 二重非負行列を用いてサンプル重みをパラメータ化することにより、カーネル再重み付け回帰の新しいコヒーレントな手法を提案する。
数値実験により、我々の再重み付け戦略は多くのデータセットに対して有望な結果をもたらすことが示された。
- 参考スコア(独自算出の注目度): 25.733130388781476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many machine learning tasks that involve predicting an output response can be
solved by training a weighted regression model. Unfortunately, the predictive
power of this type of models may severely deteriorate under low sample sizes or
under covariate perturbations. Reweighting the training samples has aroused as
an effective mitigation strategy to these problems. In this paper, we propose a
novel and coherent scheme for kernel-reweighted regression by reparametrizing
the sample weights using a doubly non-negative matrix. When the weighting
matrix is confined in an uncertainty set using either the log-determinant
divergence or the Bures-Wasserstein distance, we show that the adversarially
reweighted estimate can be solved efficiently using first-order methods.
Numerical experiments show that our reweighting strategy delivers promising
results on numerous datasets.
- Abstract(参考訳): 出力応答を予測する機械学習タスクの多くは、重み付け回帰モデルをトレーニングすることで解決できる。
残念なことに、この種のモデルの予測能力は、低いサンプルサイズまたは共変摂動下で著しく低下する可能性がある。
トレーニングサンプルの再重み付けはこれらの問題に対する効果的な緩和戦略として注目されている。
本稿では,二重非負行列を用いて試料重みを再パラメータ化することにより,核重み付け回帰のための新規かつコヒーレントなスキームを提案する。
重み付け行列が対数行列の発散あるいはブレス=ヴァッサーシュタイン距離を用いて不確実性集合に閉じ込められた場合、逆再重み付け推定が一階法で効率的に解けることを示す。
数値実験により、我々の重み付け戦略が多くのデータセットに有望な結果をもたらすことが示された。
関連論文リスト
- Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
我々は高次元線形量子レグレッションのための分散推定とサポート回復に焦点をあてる。
元の量子レグレッションを最小二乗最適化に変換する。
効率的なアルゴリズムを開発し、高い計算と通信効率を享受する。
論文 参考訳(メタデータ) (2024-05-13T08:32:22Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation [2.1756081703276]
Fr'echet回帰は、非ユークリッド応答変数を含む回帰分析のための有望なアプローチとして登場した。
提案手法は,大域的Fr'echet回帰と主成分回帰の概念を組み合わせて,回帰推定器の効率と精度を向上させることを目的とする。
論文 参考訳(メタデータ) (2023-05-16T08:37:54Z) - Augmented balancing weights as linear regression [3.877356414450364]
自動脱バイアス機械学習(AutoDML)としても知られる拡張バランスウェイトの特徴を新たに提供する。
拡張推定器は、元の結果モデルから得られる係数と、不注意な通常の最小二乗(OLS)から得られる係数を同じデータに組み合わせた単一の線形モデルと等価であることを示す。
私たちのフレームワークは、この人気の高い推定器のクラスにブラックボックスを開きます。
論文 参考訳(メタデータ) (2023-04-27T21:53:54Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
最小二乗回帰問題を無限次元出力で解くために,還元ランク法を提案し,解析する。
提案手法の学習バウンダリを導出し、フルランク手法と比較して統計的性能の設定を改善する研究を行う。
論文 参考訳(メタデータ) (2022-11-16T15:07:00Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
不均衡データは、ディープラーニングに基づく分類モデルに課題をもたらす。
不均衡なデータを扱うための最も広く使われているアプローチの1つは、再重み付けである。
本稿では,分布の観点からの最適輸送(OT)に基づく新しい再重み付け手法を提案する。
論文 参考訳(メタデータ) (2022-08-05T01:23:54Z) - Coordinated Double Machine Learning [8.808993671472349]
本稿では、ディープニューラルネットワークのための注意深く調整された学習アルゴリズムにより、推定バイアスを低減できると主張している。
シミュレーションデータと実データの両方を用いた数値実験により,提案手法の実証性能が向上したことを示す。
論文 参考訳(メタデータ) (2022-06-02T05:56:21Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Learning to Reweight Imaginary Transitions for Model-Based Reinforcement
Learning [58.66067369294337]
モデルが不正確または偏りがある場合、虚構軌跡はアクション値とポリシー関数を訓練するために欠落する可能性がある。
虚構遷移を適応的に再重み付けし, 未生成軌跡の負の効果を低減させる。
提案手法は,複数のタスクにおいて,最先端のモデルベースおよびモデルフリーなRLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2021-04-09T03:13:35Z) - Why resampling outperforms reweighting for correcting sampling bias with
stochastic gradients [10.860844636412862]
バイアスデータセット上で機械学習モデルをトレーニングするには、バイアスを補うための補正テクニックが必要である。
我々は、目的関数を維持するためにサブグループの比率を再均衡させる2つの一般的な手法、再サンプリングと再重み付けについて検討する。
論文 参考訳(メタデータ) (2020-09-28T16:12:38Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。