論文の概要: Improving Load Forecast in Energy Markets During COVID-19
- arxiv url: http://arxiv.org/abs/2110.00181v1
- Date: Fri, 1 Oct 2021 02:55:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 01:31:34.247304
- Title: Improving Load Forecast in Energy Markets During COVID-19
- Title(参考訳): エネルギー市場における需要予測の改善
- Authors: Ziyun Wang and Hao Wang
- Abstract要約: 新型コロナウイルスのパンデミック(COVID-19)の急激な流行は、2020年で最も重要な出来事であり、世界中で深刻な影響が続いた。
本稿では,新型コロナウイルスの感染拡大に伴う負荷予測性能の向上に有効なモデルや特徴を体系的に評価することで,研究ギャップを埋めることを目的とする。
- 参考スコア(独自算出の注目度): 5.128521783181427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The abrupt outbreak of the COVID-19 pandemic was the most significant event
in 2020, which had profound and lasting impacts across the world. Studies on
energy markets observed a decline in energy demand and changes in energy
consumption behaviors during COVID-19. However, as an essential part of system
operation, how the load forecasting performs amid COVID-19 is not well
understood. This paper aims to bridge the research gap by systematically
evaluating models and features that can be used to improve the load forecasting
performance amid COVID-19. Using real-world data from the New York Independent
System Operator, our analysis employs three deep learning models and adopts
both novel COVID-related features as well as classical weather-related
features. We also propose simulating the stay-at-home situation with
pre-stay-at-home weekend data and demonstrate its effectiveness in improving
load forecasting accuracy during COVID-19.
- Abstract(参考訳): 新型コロナウイルスのパンデミック(COVID-19)の急激な流行は、2020年で最も重要な出来事であり、世界中で深刻な影響が続いた。
エネルギー市場の研究は、新型コロナウイルスによるエネルギー需要の減少とエネルギー消費行動の変化を観察した。
しかし、システム運用の不可欠な部分として、covid-19による負荷予測の実施方法については、よく分かっていない。
本稿では,covid-19の負荷予測性能を改善するためのモデルや機能を体系的に評価することで,研究のギャップを埋めることを目的とする。
ニューヨーク独立系オペレーターの現実世界のデータを使って、3つのディープラーニングモデルを採用し、新しい新型コロナウイルス関連機能と古典的な気象関連機能の両方を採用した。
また,自宅待機状況と自宅待機前の週末データとのシミュレーションを行い,covid-19時の負荷予測精度の向上効果を実証する。
関連論文リスト
- Efficient mid-term forecasting of hourly electricity load using generalized additive models [0.0]
本稿では,解釈可能なP-スプラインから構築され,自己回帰後処理によって強化された一般化付加モデル(GAM)を用いた新しい予測手法を提案する。
提案手法は欧州24カ国の負荷データに基づいて評価される。
論文 参考訳(メタデータ) (2024-05-27T11:41:41Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - DECODE: Data-driven Energy Consumption Prediction leveraging Historical
Data and Environmental Factors in Buildings [1.2891210250935148]
本稿では,建築エネルギー消費の予測を目的としたLong Short-Term Memory (LSTM)モデルを提案する。
LSTMモデルは、住宅や商業ビルの正確な短時間、中長期のエネルギー予測を提供する。
これは例外的な予測精度を示し、R2スコアは0.97で、平均絶対誤差(MAE)は0.007である。
論文 参考訳(メタデータ) (2023-09-06T11:02:53Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - In Search of Deep Learning Architectures for Load Forecasting: A
Comparative Analysis and the Impact of the Covid-19 Pandemic on Model
Performance [0.0]
短期負荷予測(STLF)は、その信頼性、排出、コストの最適化に不可欠である。
この研究は、精度の予測と持続可能性のトレーニングに関して、Deep Learning (DL)アーキテクチャの比較研究を行う。
ケーススタディは、ポルトガルの全国15分解像度ネットロードタイムシリーズの日頭予測に焦点を当てている。
論文 参考訳(メタデータ) (2023-02-25T10:08:23Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Analyzing the Effects of COVID-19 Pandemic on the Energy Demand: the
Case of Northern Italy [7.331287001215395]
電力需要プロファイルの分析は、全体的な経済動向に関する洞察を提供する。
我々は,イタリア北部の集積電力需要を推定する多層フィードフォワードニューラルネットワークを用いた。
Googleのモビリティレポートデータを用いて、ロックダウン期間中の移動行動の変化と相関する。
論文 参考訳(メタデータ) (2020-11-09T17:05:40Z) - A machine learning methodology for real-time forecasting of the
2019-2020 COVID-19 outbreak using Internet searches, news alerts, and
estimates from mechanistic models [53.900779250589814]
提案手法は,2日前の安定かつ正確な予測を行うことができる。
我々のモデルでは,中国32州中27州において,ベースラインモデルよりも予測力が優れています。
論文 参考訳(メタデータ) (2020-04-08T14:39:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。