論文の概要: Efficient mid-term forecasting of hourly electricity load using generalized additive models
- arxiv url: http://arxiv.org/abs/2405.17070v1
- Date: Mon, 27 May 2024 11:41:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 15:42:27.315351
- Title: Efficient mid-term forecasting of hourly electricity load using generalized additive models
- Title(参考訳): 一般化付加モデルを用いた時限電力負荷の効率的な中期予測
- Authors: Monika Zimmermann, Florian Ziel,
- Abstract要約: 本稿では,解釈可能なP-スプラインから構築され,自己回帰後処理によって強化された一般化付加モデル(GAM)を用いた新しい予測手法を提案する。
提案手法は欧州24カ国の負荷データに基づいて評価される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate mid-term (weeks to one year) hourly electricity load forecasts are essential for strategic decision-making in power plant operation, ensuring supply security and grid stability, and energy trading. While numerous models effectively predict short-term (hours to a few days) hourly load, mid-term forecasting solutions remain scarce. In mid-term load forecasting, besides daily, weekly, and annual seasonal and autoregressive effects, capturing weather and holiday effects, as well as socio-economic non-stationarities in the data, poses significant modeling challenges. To address these challenges, we propose a novel forecasting method using Generalized Additive Models (GAMs) built from interpretable P-splines and enhanced with autoregressive post-processing. This model uses smoothed temperatures, Error-Trend-Seasonal (ETS) modeled non-stationary states, a nuanced representation of holiday effects with weekday variations, and seasonal information as input. The proposed model is evaluated on load data from 24 European countries. This analysis demonstrates that the model not only has significantly enhanced forecasting accuracy compared to state-of-the-art methods but also offers valuable insights into the influence of individual components on predicted load, given its full interpretability. Achieving performance akin to day-ahead TSO forecasts in fast computation times of a few seconds for several years of hourly data underscores the model's potential for practical application in the power system industry.
- Abstract(参考訳): 正確な中期(週から1年)の電力負荷予測は、発電所運営における戦略的意思決定、供給の安全とグリッドの安定性、エネルギー取引に不可欠である。
多くのモデルは時間的負荷(時間から数日)を効果的に予測するが、中期予測ソリューションは乏しい。
中期の負荷予測では、日、週、年ごとの季節的・自動回帰効果に加えて、天候や休日的な影響を捉え、データにおける社会経済的非定常性も重要なモデリング上の課題を提起している。
これらの課題に対処するために,解釈可能なP-スプラインから構築され,自己回帰後処理によって強化された一般化付加モデル(GAM)を用いた新しい予測手法を提案する。
このモデルは、スムーズな温度、非定常状態をモデル化したETS(Error-Trend-Seasonal)、平日の変動を伴う休日効果のニュアンスな表現、季節情報を入力として利用する。
提案手法は欧州24カ国の負荷データに基づいて評価される。
この分析は、モデルが最先端の手法と比較して予測精度を著しく向上するだけでなく、その完全な解釈可能性を考えると、個々のコンポーネントが予測負荷に与える影響についての貴重な洞察を提供することを示している。
日々のTSO予測に類似したパフォーマンスを達成するために、数秒間数秒の高速な計算時間を数時間の時間データで達成することは、電力システム産業における実用的な応用の可能性を示している。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Uncertainty quantification for data-driven weather models [0.0]
本研究では,現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法について検討・比較する。
具体的には,摂動によるアンサンブル予測を初期条件と比較し,予測の不確実性を定量化する手法を提案する。
欧州における選択された気象変数の中距離予測のケーススタディにおいて,不確実な定量化手法を用いてパング・ウェザーモデルを用いて得られた確率的予測は,有望な結果を示す。
論文 参考訳(メタデータ) (2024-03-20T10:07:51Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
本稿では,人工知能を用いた短期負荷予測手法を提案する。
その結果、(負荷予測タスクに適応した)持続的項と回帰的項の組み合わせは、最高の予測精度が得られることがわかった。
論文 参考訳(メタデータ) (2024-02-21T12:23:09Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Analysis of Weather and Time Features in Machine Learning-aided ERCOT
Load Forecasting [0.2184775414778289]
本研究は,短期システム全体の総負荷を予測するための入力機能の一部として,さまざまな時間と天気情報を取得する機械学習(ML)モデルを開発する。
同じ地域の実際の負荷と過去の気象データを処理し、その後MLモデルのトレーニングに使用した。
ケーススタディでは、ESROT負荷予測のための異なる天候と時間入力特性で訓練されたMLモデルの有効性が実証された。
論文 参考訳(メタデータ) (2023-10-13T00:46:12Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - SaDI: A Self-adaptive Decomposed Interpretable Framework for Electric
Load Forecasting under Extreme Events [25.325870546140788]
自己適応型分解解釈フレームワーク(SaDI)という新しい予測フレームワークを提案する。
中央中国の電力負荷と公共エネルギーの計器の実験により、提案されたSaDIフレームワークは平均22.14%の改善が達成された。
論文 参考訳(メタデータ) (2023-06-14T07:11:30Z) - Electricity Demand Forecasting with Hybrid Statistical and Machine
Learning Algorithms: Case Study of Ukraine [0.0]
提案手法は2013年から2020年までのウクライナの電力消費の時間データを用いて構築された。
我々のハイブリッドモデルは、時間分解能で長期電力消費を予測するのに非常に効果的である。
論文 参考訳(メタデータ) (2023-04-11T12:15:50Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
現在、英国電気市場は、規制当局が30分毎に発行する負荷(需要)予測によってガイドされている。
本稿では,機能工学(候補予測機能の選択),移動ウィンドウ予測,LSTMエンコーダデコーダを組み合わせたハイブリッド予測モデルHYENAを提案する。
論文 参考訳(メタデータ) (2022-05-20T22:13:25Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。