論文の概要: Tree in Tree: from Decision Trees to Decision Graphs
- arxiv url: http://arxiv.org/abs/2110.00392v1
- Date: Fri, 1 Oct 2021 13:20:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-04 19:40:28.410090
- Title: Tree in Tree: from Decision Trees to Decision Graphs
- Title(参考訳): tree in tree: 決定木から決定グラフへ
- Authors: Bingzhao Zhu, Mahsa Shoaran
- Abstract要約: Tree in Tree decision graph (TnT)は、従来の決定木をより汎用的で強力な非巡回グラフに拡張するフレームワークである。
提案するモデルは,広く用いられている決定木に代わる,新しい,より効率的かつ正確な代替手段である。
- 参考スコア(独自算出の注目度): 2.2336243882030025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision trees have been widely used as classifiers in many machine learning
applications thanks to their lightweight and interpretable decision process.
This paper introduces Tree in Tree decision graph (TnT), a framework that
extends the conventional decision tree to a more generic and powerful directed
acyclic graph. TnT constructs decision graphs by recursively growing decision
trees inside the internal or leaf nodes instead of greedy training. The time
complexity of TnT is linear to the number of nodes in the graph, and it can
construct decision graphs on large datasets. Compared to decision trees, we
show that TnT achieves better classification performance with reduced model
size, both as a stand-alone classifier and as a base estimator in
bagging/AdaBoost ensembles. Our proposed model is a novel, more efficient, and
accurate alternative to the widely-used decision trees.
- Abstract(参考訳): 決定木は、軽量で解釈可能な決定プロセスのおかげで、多くの機械学習アプリケーションで分類器として広く使われている。
本稿では、従来の決定木をより汎用的で強力な非巡回グラフに拡張するフレームワークであるTree in Tree decision graph (TnT)を紹介する。
TnTは、内部または葉ノード内で再帰的に成長する決定木によって決定グラフを構築する。
TnTの時間複雑性はグラフ内のノード数に線形であり、大きなデータセット上の決定グラフを構築することができる。
決定木と比較すると,TnTは単独の分類器として,また,バッグング/AdaBoostアンサンブルの基底推定器として,モデルサイズを小さくすることで,より良い分類性能が得られることを示す。
提案するモデルは,広く用いられている決定木に代わる,新しい,より効率的かつ正確な代替手段である。
関連論文リスト
- Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
メタ学習によってトレーニングされたトランスフォーマーベースのモデルであるMetaTreeを導入し、強力な決定木を直接生成する。
我々は、多くのデータセットに欲求決定木とグローバルに最適化された決定木の両方を適合させ、MetaTreeを訓練して、強力な一般化性能を実現する木のみを生成する。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - Linear TreeShap [16.246232737115218]
決定木は解釈容易性から有名である。
精度を向上させるには、深い木や木々のアンサンブルを育てなければならない。
本稿では,より効率的かつ簡単なアルゴリズムであるリニアツリーサップを提案する。
論文 参考訳(メタデータ) (2022-09-16T23:17:15Z) - Social Interpretable Tree for Pedestrian Trajectory Prediction [75.81745697967608]
本稿では,このマルチモーダル予測課題に対処するため,SIT(Social Interpretable Tree)と呼ばれる木に基づく手法を提案する。
木の根から葉までの経路は、個々の将来の軌跡を表す。
ETH-UCYとStanford Droneのデータセットによる実験結果からは,手作り木にもかかわらず,我々の手法が最先端の手法の性能に適合または超えることを示した。
論文 参考訳(メタデータ) (2022-05-26T12:18:44Z) - SONG: Self-Organizing Neural Graphs [10.253870280561609]
決定木は二分決定に基づいており、決定を素早くし、クラス階層を提供するため、容易に解釈できる。
決定木がよく知られた欠点の1つは、決定木が決定ノードを再利用できないことである。
本稿では、マルコフ過程に基づく一般的なパラダイムを提供する。これは、自己組織化ニューラルネットワーク(SONG)と呼ばれる特殊なタイプの決定グラフの効率的なトレーニングを可能にする。
論文 参考訳(メタデータ) (2021-07-28T07:53:53Z) - TD-GEN: Graph Generation With Tree Decomposition [31.751200416677225]
TD-GENは木分解に基づくグラフ生成フレームワークである。
ツリーノードはスーパーノードであり、それぞれがグラフ内のノードのクラスタを表す。
論文 参考訳(メタデータ) (2021-06-20T08:57:43Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
ノードからの観測が独立しているが非識別的に分散ノイズによって破損した場合、Ising Treeモデルの学習を検討する。
Katiyarら。
(2020) は, 正確な木構造は復元できないが, 部分木構造を復元できることを示した。
統計的に堅牢な部分木回復アルゴリズムであるSymmetrized Geometric Averaging(SGA)を提案する。
論文 参考訳(メタデータ) (2021-01-22T01:57:35Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - Convex Polytope Trees [57.56078843831244]
コンベックスポリトープ木(CPT)は、決定境界の解釈可能な一般化によって決定木の系統を拡張するために提案される。
木構造が与えられたとき,木パラメータに対するCPTおよび拡張性のあるエンドツーエンドトレーニングアルゴリズムを効率的に構築する。
論文 参考訳(メタデータ) (2020-10-21T19:38:57Z) - Succinct Explanations With Cascading Decision Trees [5.877164140116815]
そこで我々はCascading Decision Treesと呼ぶ新しい決定木モデルを提案する。
私たちの重要な洞察は、意思決定パスと説明パスの概念を分離することです。
カスケード決定木を新しいサンプルに適用すると、非常に短く簡潔な説明が得られる。
論文 参考訳(メタデータ) (2020-10-13T18:48:39Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。