論文の概要: Sim and Real: Better Together
- arxiv url: http://arxiv.org/abs/2110.00445v2
- Date: Tue, 5 Oct 2021 07:02:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 10:49:43.827698
- Title: Sim and Real: Better Together
- Title(参考訳): SimとReal: より良く連携する
- Authors: Shirli Di Castro Shashua, Dotan Di Castro, Shie Mannor
- Abstract要約: シミュレーションと実環境とのインタラクションの両方から同時に学習する方法を実証する。
本稿では,高いスループットから多数のサンプルのバランスをとるアルゴリズムを提案するが,精度は低い。
このような多環境相互作用を理論的に解析し、新しい理論的なリプレイバッファ解析により収束特性を提供する。
- 参考スコア(独自算出の注目度): 47.14469055555684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation is used extensively in autonomous systems, particularly in robotic
manipulation. By far, the most common approach is to train a controller in
simulation, and then use it as an initial starting point for the real system.
We demonstrate how to learn simultaneously from both simulation and interaction
with the real environment. We propose an algorithm for balancing the large
number of samples from the high throughput but less accurate simulation and the
low-throughput, high-fidelity and costly samples from the real environment. We
achieve that by maintaining a replay buffer for each environment the agent
interacts with. We analyze such multi-environment interaction theoretically,
and provide convergence properties, through a novel theoretical replay buffer
analysis. We demonstrate the efficacy of our method on a sim-to-real
environment.
- Abstract(参考訳): シミュレーションは自律システム、特にロボット操作で広く使われている。
これまでのところ、最も一般的なアプローチは、シミュレーションでコントローラをトレーニングし、それを実際のシステムの開始点として使うことである。
シミュレーションと実環境とのインタラクションの両方から同時に学習する方法を実証する。
本研究では,高スループットだがシミュレーション精度の低い多数のサンプルと,実環境からの低スループット・高忠実・高コストサンプルのバランスをとるアルゴリズムを提案する。
エージェントが相互作用する環境ごとにリプレイバッファを維持させることで、これを実現する。
このようなマルチ環境相互作用を理論的に解析し,新しい理論リプレイバッファ解析により収束特性を提供する。
実環境における本手法の有効性を実証する。
関連論文リスト
- Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications [23.94013806312391]
そこで本研究では,テキスト内学習を用いてシミュレーション環境パラメータを動的に調整する手法を提案する。
オブジェクトスクーピングとテーブルエアホッケーという2つのタスクにまたがるアプローチを検証する。
提案手法は,ロボットの動的現実シナリオへの展開を推し進め,効率的かつスムーズなシステム識別を実現する。
論文 参考訳(メタデータ) (2024-10-27T07:13:38Z) - Overcoming the Sim-to-Real Gap: Leveraging Simulation to Learn to Explore for Real-World RL [25.991354823569033]
多くの制度において、直接シム2リアルトランスファーは失敗する可能性があるが、シミュレータを使って一連のエフェクト探索ポリシーを学習できることが示される。
特に、低ランクのMDPの設定においては、これらの探索政策と単純で実践的なアプローチが結合していることが示される。
これは、シミュレーション転送が直接sim2real転送が失敗する環境で強化学習において証明可能な利益をもたらすという最初の証拠である。
論文 参考訳(メタデータ) (2024-10-26T19:12:27Z) - Zero-shot Sim2Real Adaptation Across Environments [45.44896435487879]
本稿では,実世界のシミュレートされたポリシーを模倣することを学ぶリバースアクショントランスフォーメーション(RAT)ポリシーを提案する。
RATは、新しい環境へのゼロショット適応を達成するために、Universal Policy Network上にデプロイできる。
論文 参考訳(メタデータ) (2023-02-08T11:59:07Z) - Provable Sim-to-real Transfer in Continuous Domain with Partial
Observations [39.18274543757048]
シン・トゥ・リアル・トランスファー(英語版)は、シミュレーション環境でRLエージェントを訓練し、実世界で展開する。
実環境における最適政策と競合するシミュレートされた環境から、人気のある頑健な対人訓練アルゴリズムが、ポリシーを学習できることを示す。
論文 参考訳(メタデータ) (2022-10-27T16:37:52Z) - Inferring Articulated Rigid Body Dynamics from RGBD Video [18.154013621342266]
我々は,逆レンダリングと微分可能なシミュレーションを組み合わせるパイプラインを導入し,実世界の調音機構のディジタルツインを作成する。
本手法はロボットが操作する関節機構のキネマティックツリーを正確に再構築する。
論文 参考訳(メタデータ) (2022-03-20T08:19:02Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
シミュレーションで訓練されたポリシーは、しばしば現実世界に移されるときに失敗する。
ドメインのランダム化のようなこの問題に取り組む現在のアプローチには、事前の知識とエンジニアリングが必要である。
実世界に合わせてシミュレータシステムパラメータを自動的にチューニングする手法を提案する。
論文 参考訳(メタデータ) (2021-04-15T17:59:55Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。