Absolutely stable time crystals at finite temperature
- URL: http://arxiv.org/abs/2110.00585v2
- Date: Tue, 03 Dec 2024 14:01:27 GMT
- Title: Absolutely stable time crystals at finite temperature
- Authors: Francisco Machado, Quntao Zhuang, Norman Y. Yao, Michael P. Zaletel,
- Abstract summary: We show that locally-interacting, periodically-driven (Floquet) Hamiltonian dynamics coupled to a Langevin bath support finite-temperature discrete time crystals.
By contrast to both prethermal and many-body localized DTCs, the time crystalline order we uncover is stable to arbitrary perturbations.
- Score: 0.8437187555622164
- License:
- Abstract: We show that locally-interacting, periodically-driven (Floquet) Hamiltonian dynamics coupled to a Langevin bath support finite-temperature discrete time crystals (DTC) with an infinite auto-correlation time. By contrast to both prethermal and many-body localized DTCs, the time crystalline order we uncover is stable to arbitrary perturbations, including those that break the time translation symmetry of the underlying drive. Our approach utilizes a general mapping from probabilistic cellular automata (PCA) to open classical Floquet systems undergoing continuous-time Langevin dynamics. Applying this mapping to a variant of the Toom cellular automata, which we dub the ''$\pi$-Toom time crystal'', leads to a 2D Floquet Hamiltonian with a finite-temperature DTC phase transition. We provide numerical evidence for the existence of this transition, and analyze the statistics of the finite temperature fluctuations. Finally, we discuss how general results from the field of probabilistic cellular automata imply the existence of discrete time crystals (with an infinite auto-correlation time) in all dimensions, $d \geq 1$.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Subspace-thermal discrete time crystals from phase transitions between different n-tuple discrete time crystals [0.46040036610482665]
We propose a new Floquet time crystal model that responds in arbitrary multiples of the driving period.
Transitions between these time crystals with different periods give rise to a novel phase of matter that we call subspace-thermal discrete time crystals.
arXiv Detail & Related papers (2024-09-04T16:19:43Z) - Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator [49.1574468325115]
We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate.
We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian.
We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone modes with zero quasi-energy.
arXiv Detail & Related papers (2024-02-16T16:06:08Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Floquet time crystals in driven spin systems with all-to-all $p$-body
interactions [0.0]
We show the emergence of Floquet time crystal phases in the Floquet dynamics of periodically driven $p$-spin models.
We develop a framework to predict robust subharmonic response in classical area-preserving maps.
Our analysis reveals that the robustness of the time-crystal behavior is reduced as their period increases.
arXiv Detail & Related papers (2022-01-26T00:57:40Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Universal presence of time-crystalline phases and period-doubling
oscillations in one-dimensional Floquet topological insulators [2.3978553352626064]
We report a ubiquitous presence of topological Floquet time crystal (TFTC) in one-dimensional periodically-driven systems.
Our modeling of the time-crystalline 'ground state' can be easily realized in experimental platforms such as topological photonics and ultracold fields.
arXiv Detail & Related papers (2020-05-08T09:20:57Z) - Phase diagram and optimal control for n-tupling discrete time crystal [0.0]
In periodically driven systems, discrete time crystals (DTC) can be realized which have a periodicity that is n times the driving period.
In this work, we demonstrate that such DTC is robust against perturbations to the initial distribution of atoms.
arXiv Detail & Related papers (2020-04-30T17:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.