Strong laser fields and their power to generate controllable
high-photon-number coherent-state superpositions
- URL: http://arxiv.org/abs/2110.01032v3
- Date: Thu, 27 Oct 2022 07:27:30 GMT
- Title: Strong laser fields and their power to generate controllable
high-photon-number coherent-state superpositions
- Authors: Javier Rivera-Dean, Theocharis Lamprou, Emilio Pisanty, Philipp
Stammer, Andr\'es F. Ord\'o\~nez, Marcelo F. Ciappina, Maciej Lewenstein and
Paraskevas Tzallas
- Abstract summary: We show the potential of strong laser fields for generating controllable high-photon-number coherent-state superpositions.
We show how the obtained coherent-state superpositions change from an optical Schr"odinger "cat" state to a "kitten" state by changing the atomic density in the laser-atom interaction region.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, intensely driven laser-matter interactions have been used to
connect the fields of strong laser field physics with quantum optics by
generating non-classical states of light. Here, we make a further key step and
show the potential of strong laser fields for generating controllable
high-photon-number coherent-state superpositions. This has been achieved by
using two of the most prominent strong-laser induced processes: high-harmonic
generation and above-threshold ionization. We show how the obtained
coherent-state superpositions change from an optical Schr\"odinger "cat" state
to a "kitten" state by changing the atomic density in the laser-atom
interaction region, and we demonstrate the generation of a 9-photon shifted
optical "cat" state which, to our knowledge, is the highest photon number
optical "cat" state experimentally reported. Our findings anticipate the
development of new methods that naturally lead to the creation of
high-photon-number controllable coherent-state superpositions, advancing
investigations in quantum technology.
Related papers
- Generation of non-classical and entangled light states using intense laser-matter interactions [0.0]
Non-classical and entangled light states are of fundamental interest in quantum mechanics.
We show how the use of fully quantized approaches in intense laser-matter interactions can lead to the generation high photon-number non-classical states.
We discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science.
arXiv Detail & Related papers (2024-10-22T22:00:43Z) - Nonlinear optics using intense optical Schr\"odinger "cat" states [0.0]
We show the generation of a femtosecond duration optical "cat" state in the infrared spectral range.
These states exhibit intensities sufficient to induce nonlinear processes in matter.
The findings introduce the optical "cat" states into the realm of nonlinear quantum optics, opening up exciting new paths in quantum information science.
arXiv Detail & Related papers (2023-06-26T07:47:30Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Quantum electrodynamics of intense laser-matter interactions: A tool for
quantum state engineering [0.1465840097113565]
We provide a comprehensive fully quantized description of intense laser-atom interactions.
We elaborate on the processes of high harmonic generation, above-threshold-ionization.
We discuss new phenomena that cannot be revealed within the context of semi-classical theories.
arXiv Detail & Related papers (2022-06-09T07:07:30Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - On quantum free-electron laser: Superradience [91.3755431537592]
An exact expression for the evolution of the laser amplitude is obtained.
Reliable conditions for the superradiance of the high-gained laser are discussed.
arXiv Detail & Related papers (2022-03-27T15:07:09Z) - High photon number entangled states and coherent state superposition
from the extreme-ultraviolet to the far infrared [0.0]
We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions.
It is found that all field modes involved in the high harmonic generation process are entangled, and upon performing a quantum operation, leads to the generation of high photon number optical cat states.
These states can be considered as a new resource for fundamental tests of quantum theory, quantum information processing or sensing with non-classical states of light.
arXiv Detail & Related papers (2021-07-27T15:40:23Z) - Photon-number entanglement generated by sequential excitation of a
two-level atom [0.0]
Entanglement and spontaneous emission are fundamental quantum phenomena that drive many applications of quantum physics.
Here, we show that this natural process can be used to produce photon-number entangled states of light distributed in time.
Our results on photon-number entanglement can be further exploited to generate new states of quantum light with applications in quantum technologies.
arXiv Detail & Related papers (2021-06-03T18:00:02Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.