論文の概要: The Model Mastery Lifecycle: A Framework for Designing Human-AI Interaction
- arxiv url: http://arxiv.org/abs/2408.12781v1
- Date: Fri, 23 Aug 2024 01:00:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:19:03.065954
- Title: The Model Mastery Lifecycle: A Framework for Designing Human-AI Interaction
- Title(参考訳): Model Mastery Lifecycle:人間とAIのインタラクションを設計するためのフレームワーク
- Authors: Mark Chignell, Mu-Huan Miles Chung, Jaturong Kongmanee, Khilan Jerath, Abhay Raman,
- Abstract要約: ますます多くの分野におけるAIの利用は、長いプロセスの最新のイテレーションである。
異なる状況でAIをどのように使うべきかを決定する方法が緊急に必要である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The utilization of AI in an increasing number of fields is the latest iteration of a long process, where machines and systems have been replacing humans, or changing the roles that they play, in various tasks. Although humans are often resistant to technological innovation, especially in workplaces, there is a general trend towards increasing automation, and more recently, AI. AI is now capable of carrying out, or assisting with, many tasks that used to be regarded as exclusively requiring human expertise. In this paper we consider the case of tasks that could be performed either by human experts or by AI and locate them on a continuum running from exclusively human task performance at one end to AI autonomy on the other, with a variety of forms of human-AI interaction between those extremes. Implementation of AI is constrained by the context of the systems and workflows that it will be embedded within. There is an urgent need for methods to determine how AI should be used in different situations and to develop appropriate methods of human-AI interaction so that humans and AI can work together effectively to perform tasks. In response to the evolving landscape of AI progress and increasing mastery, we introduce an AI Mastery Lifecycle framework and discuss its implications for human-AI interaction. The framework provides guidance on human-AI task allocation and how human-AI interfaces need to adapt to improvements in AI task performance over time. Within the framework we identify a zone of uncertainty where the issues of human-AI task allocation and user interface design are likely to be most challenging.
- Abstract(参考訳): ますます多くの分野におけるAIの利用は、機械やシステムが人間を置き換える、あるいはそれらが果たす役割をさまざまなタスクで変えるという、長いプロセスの最新のイテレーションである。
人間は技術革新に抵抗することが多いが、特に職場では、自動化を拡大する一般的な傾向があり、最近ではAIが普及している。
AIは現在、以前は人間の専門知識のみを必要とすると考えられていた多くのタスクを実行、または支援することができる。
本稿では,人間の専門家かAIが行うことができるタスクの事例を考察し,一方の端で人間のみのタスクパフォーマンスから他方の端でAI自律性まで,その極端で人間とAIのインタラクションのさまざまな形態を持つ連続体に配置する。
AIの実装は、システムとワークフローのコンテキストによって制約され、組み込みされる。
異なる状況でAIをどのように使うべきかを判断し、人間とAIが効果的に連携してタスクを遂行できるように、人間とAIの相互作用の適切な方法を開発する方法が緊急に必要である。
AIの進歩と熟達の進展に対応するため、我々はAI Mastery Lifecycleフレームワークを導入し、その人間-AIインタラクションへの影響について議論する。
このフレームワークは、ヒューマン-AIタスク割り当てのガイダンスと、ヒューマン-AIインターフェースが時間とともにAIタスクのパフォーマンスの改善にどのように適応する必要があるかを提供する。
フレームワーク内では、ヒューマンAIタスクアロケーションやユーザインターフェース設計の問題が最も困難な、不確実性のゾーンを特定します。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - The Rise of the AI Co-Pilot: Lessons for Design from Aviation and Beyond [22.33734581699234]
我々は、AIが単なるツールではなく、人間の指導の下で働く共同パイロットと見なされるパラダイムを提唱する。
本稿では,AIパートナーシップにおけるアクティブな人間の関与,制御,スキル向上を重視したデザインアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-16T13:58:15Z) - Applying HCAI in developing effective human-AI teaming: A perspective
from human-AI joint cognitive systems [10.746728034149989]
研究と応用は、AIシステムを開発するための新しいパラダイムとして、HAT(Human-AI Teaming)を使用している。
我々は,人間とAIの協調認知システム(HAIJCS)の概念的枠組みについて詳しく検討する。
本稿では,HATを表現・実装するためのヒューマンAI共同認知システム(HAIJCS)の概念的枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-08T06:26:38Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Intent-aligned AI systems deplete human agency: the need for agency
foundations research in AI safety [2.3572498744567127]
人間の意図の一致は、安全なAIシステムには不十分である、と我々は主張する。
我々は、人類の長期的機関の保存がより堅牢な標準であると論じている。
論文 参考訳(メタデータ) (2023-05-30T17:14:01Z) - On the Effect of Information Asymmetry in Human-AI Teams [0.0]
我々は、人間とAIの相補的ポテンシャルの存在に焦点を当てる。
具体的には、情報非対称性を相補性ポテンシャルの必須源とみなす。
オンライン実験を行うことで、人間がそのような文脈情報を使ってAIの決定を調整できることを実証する。
論文 参考訳(メタデータ) (2022-05-03T13:02:50Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
HCAI(Human-Centered AI)は、さまざまなヒューマンタスクをサポートするAI技術の設計と実装を目的とした研究活動である。
データサイエンス(DS)に関する一連の研究プロジェクトを使ってHCAIにどのようにアプローチするかをケーススタディとして紹介する。
論文 参考訳(メタデータ) (2021-10-03T21:47:13Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。