Reverse quantum speed limit and minimum Hilbert space norm
- URL: http://arxiv.org/abs/2110.01369v2
- Date: Mon, 28 Mar 2022 16:16:12 GMT
- Title: Reverse quantum speed limit and minimum Hilbert space norm
- Authors: Mark A. Rubin
- Abstract summary: The reverse quantum speed limit (RQSL) gives an upper limit to the time for evolution between initial and final quantum states.
We show that, in conjunction with the existence of a minimum time scale, the RQSL implies a lower limit to the norm of the change in a quantum state.
- Score: 0.07614628596146598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The reverse quantum speed limit (RQSL) gives an upper limit to the time for
evolution between initial and final quantum states. We show that, in
conjunction with the existence of a minimum time scale, the RQSL implies a
lower limit to the norm of the change in a quantum state, and confirm that this
limit is satisfied in two-state and ideal-measurement models. Such a lower
limit is of relevance for interpretational issues in probability and for
understanding the meaning of probability in Everett quantum theory.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Quantum Acceleration Limit [0.0]
We prove that the quantum acceleration is upper bounded by the fluctuation in the derivative of the Hamiltonian.
This leads to a universal quantum acceleration limit (QAL) which answers the question: What is the minimum time required for a quantum system to be accelerated.
arXiv Detail & Related papers (2023-12-01T18:45:28Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Quantum Speed Limit From Tighter Uncertainty Relation [0.0]
We prove a new quantum speed limit using the tighter uncertainty relations for pure quantum systems undergoing arbitrary unitary evolution.
We show that the MT bound is a special case of the tighter quantum speed limit derived here.
We illustrate the tighter speed limit for pure states with examples using random Hamiltonians and show that the new quantum speed limit outperforms the MT bound.
arXiv Detail & Related papers (2022-11-26T13:14:58Z) - Quantum Speed Limit under Brachistochrone Evolution [0.0]
We propose a geometrical approach to derive a quantum speed limit (QSL) bound for closed and open quantum systems.
We show that the QSL between a given initial state to a final state is determined not only by the entire dynamics of the system but also by the individual dynamics of a critical parameter.
arXiv Detail & Related papers (2022-07-30T14:30:01Z) - Optimal bounds on the speed of subspace evolution [77.34726150561087]
In contrast to the basic Mandelstam-Tamm inequality, we are concerned with a subspace subject to the Schroedinger evolution.
By using the concept of maximal angle between subspaces we derive optimal bounds on the speed of such a subspace evolution.
These bounds may be viewed as further generalizations of the Mandelstam-Tamm inequality.
arXiv Detail & Related papers (2021-11-10T13:32:15Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Analysis of lower bounds for quantum control times and their relation to
the quantum speed limit [0.0]
Limitations to the speed of evolution of quantum systems, typically referred to as quantum speed limits (QSLs), have important consequences for quantum control problems.
In this paper we present a short introductory overview of quantum speed limit for unitary dynamics and its connection to quantum control.
arXiv Detail & Related papers (2020-02-25T19:19:29Z) - The effect of Homodyne-based feedback control on quantum speed limit
time [0.0]
Quantum speed limit time is inversely related to the speed of evolution of a quantum system.
In this work, we study the quantum speed limit time of a two-level atom under Homodyne-based feedback control.
arXiv Detail & Related papers (2020-01-21T12:34:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.