論文の概要: SMProbLog: Stable Model Semantics in ProbLog and its Applications in
Argumentation
- arxiv url: http://arxiv.org/abs/2110.01990v1
- Date: Tue, 5 Oct 2021 12:29:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 14:13:32.422728
- Title: SMProbLog: Stable Model Semantics in ProbLog and its Applications in
Argumentation
- Title(参考訳): smproblog:problogにおける安定モデルセマンティクスとその議論への応用
- Authors: Pietro Totis, Angelika Kimmig, Luc De Raedt
- Abstract要約: SMProbLogは確率論理プログラミング言語ProbLogの一般化である。
本稿では,SMProbLogを用いて確率論的議論問題を解き明かす方法について述べる。
- 参考スコア(独自算出の注目度): 17.71804768917815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce SMProbLog, a generalization of the probabilistic logic
programming language ProbLog. A ProbLog program defines a distribution over
logic programs by specifying for each clause the probability that it belongs to
a randomly sampled program, and these probabilities are mutually independent.
The semantics of ProbLog is given by the success probability of a query, which
corresponds to the probability that the query succeeds in a randomly sampled
program. It is well-defined when each random sample uniquely determines the
truth values of all logical atoms. Argumentation problems, however, represent
an interesting practical application where this is not always the case.
SMProbLog generalizes the semantics of ProbLog to the setting where multiple
truth assignments are possible for a randomly sampled program, and implements
the corresponding algorithms for both inference and learning tasks. We then
show how this novel framework can be used to reason about probabilistic
argumentation problems. Therefore, the key contribution of this paper are: a
more general semantics for ProbLog programs, its implementation into a
probabilistic programming framework for both inference and parameter learning,
and a novel approach to probabilistic argumentation problems based on such
framework.
- Abstract(参考訳): 本稿では確率論理型プログラミング言語ProbLogの一般化であるSMProbLogを紹介する。
ProbLogプログラムは、各節に対してランダムにサンプリングされたプログラムに属する確率を指定し、論理プログラム上の分布を定義し、それらの確率は相互に独立している。
ProbLogのセマンティクスは、クエリがランダムにサンプリングされたプログラムで成功する確率に対応するクエリの成功確率によって与えられる。
それぞれのランダムサンプルが全ての論理原子の真理値を一意的に決定するときによく定義される。
しかし、議論問題は、必ずしもそうとは限らない興味深い実用的な応用である。
SMProbLogはProbLogのセマンティクスを、ランダムにサンプリングされたプログラムで複数の真理の割り当てが可能である設定に一般化し、推論と学習の両方に対応するアルゴリズムを実装している。
次に,このフレームワークを確率的議論問題の推論に利用できることを示す。
そこで本稿では,problogプログラムに対するより一般的なセマンティクス,推論とパラメータ学習のための確率的プログラミングフレームワークへの実装,およびそのようなフレームワークに基づく確率的議論問題に対する新しいアプローチについて述べる。
関連論文リスト
- Probabilistic Answer Set Programming with Discrete and Continuous Random Variables [0.18416014644193066]
Probabilistic Answer Set Programming (PASP)は、不確実な情報を表す確率的事実でAnswer Set Programmingを拡張します。
我々はHPASP(Hybrid Probabilistic Answer Set Programming)を提案する。
本稿では,予測された回答集合列挙と知識コンパイルに基づいて,2つの正確なアルゴリズムの性能を議論し,実装し,評価する。
論文 参考訳(メタデータ) (2024-09-30T13:24:42Z) - Do LLMs Play Dice? Exploring Probability Distribution Sampling in Large Language Models for Behavioral Simulation [73.58618024960968]
人間のシーケンシャルな意思決定過程をエミュレートするエージェントとして、大きな言語モデル(LLM)を採用する研究が増えている。
このことは、確率分布を理解するためにLLMエージェントの容量に関する好奇心を喚起する。
分析の結果, LLM エージェントは確率を理解できるが, 確率サンプリングに苦慮していることがわかった。
論文 参考訳(メタデータ) (2024-04-13T16:59:28Z) - "What if?" in Probabilistic Logic Programming [2.9005223064604078]
ProbLogプログラムは、特定の確率でのみ保持される事実を持つ論理プログラムである。
クエリに答えることによって、このProbLog言語を拡張します。
論文 参考訳(メタデータ) (2023-05-24T16:35:24Z) - smProbLog: Stable Model Semantics in ProbLog for Probabilistic
Argumentation [19.46250467634934]
本稿では,確率論的論理プログラミング(PLP)のセマンティクスにおいて,確率論的議論フレームワークを表すプログラムが共通の仮定を満たさないことを示す。
第二の貢献は、確率的事実の選択が論理的原子の真理割り当てを一意に決定しないプログラムのための新しいPLP意味論である。
3つ目のコントリビューションは、このセマンティクスをサポートするPLPシステムの実装である。
論文 参考訳(メタデータ) (2023-04-03T10:59:25Z) - $\omega$PAP Spaces: Reasoning Denotationally About Higher-Order,
Recursive Probabilistic and Differentiable Programs [64.25762042361839]
$omega$PAP 空間は表現的微分可能および確率的プログラミング言語についての推論のための空間である。
我々の意味論は、最も実践的な確率的で微分可能なプログラムに意味を割り当てるのに十分である。
確率プログラムのトレース密度関数のほぼすべての微分可能性を確立する。
論文 参考訳(メタデータ) (2023-02-21T12:50:05Z) - Logical Credal Networks [87.25387518070411]
本稿では,論理と確率を組み合わせた先行モデルの多くを一般化した表現的確率論的論理である論理的クレダルネットワークを紹介する。
本稿では,不確実性のあるマスターミンドゲームを解くこと,クレジットカード詐欺を検出することを含む,最大後部推論タスクの性能について検討する。
論文 参考訳(メタデータ) (2021-09-25T00:00:47Z) - Tractable Inference in Credal Sentential Decision Diagrams [116.6516175350871]
確率感性決定図は、解離ゲートの入力が確率値によってアノテートされる論理回路である。
我々は、局所確率を質量関数のクレーダル集合に置き換えることができる確率の一般化である、クレーダル感性決定図を開発する。
まず,ノイズの多い7セグメント表示画像に基づく簡単なアプリケーションについて検討する。
論文 参考訳(メタデータ) (2020-08-19T16:04:34Z) - MAP Inference for Probabilistic Logic Programming [0.30586855806896046]
我々は最大A-Posteriori(MAP)推論タスクと最も確率的説明(MPE)タスクについて検討する。
本稿では,各問題を2値決定図として表現することで,これらの課題に対処する新しいアルゴリズムを提案する。
本稿では,アノテーション付き解離を認め,MAPおよびMPE推論を行うProbLogのバージョンと比較する。
論文 参考訳(メタデータ) (2020-08-04T08:10:51Z) - Contextuality scenarios arising from networks of stochastic processes [68.8204255655161]
経験的モデルは、その分布が X 上の合同分布を極小化することができなければ文脈的と言える。
我々は、多くのプロセス間の相互作用という、文脈的経験的モデルの異なる古典的な源泉を示す。
長期にわたるネットワークの統計的挙動は、経験的モデルを一般的な文脈的かつ強い文脈的にする。
論文 参考訳(メタデータ) (2020-06-22T16:57:52Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - Stochastic Probabilistic Programs [1.90365714903665]
本稿では,確率的プログラムの概念を導入し,プログラムの仕様と推論を支援する確率的プログラミング施設のリファレンス実装を提案する。
確率プログラムのいくつかの例を示し、モデル仕様と推論の観点から、決定論的確率プログラムと対応する決定論的確率プログラムを比較した。
論文 参考訳(メタデータ) (2020-01-08T17:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。