論文の概要: Evaluating Span Extraction in Generative Paradigm: A Reflection on Aspect-Based Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2404.11539v1
- Date: Wed, 17 Apr 2024 16:33:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 13:06:14.639432
- Title: Evaluating Span Extraction in Generative Paradigm: A Reflection on Aspect-Based Sentiment Analysis
- Title(参考訳): 生成パラダイムにおけるスパン抽出の評価:アスペクトベース感性分析の考察
- Authors: Soyoung Yang, Won Ik Cho,
- Abstract要約: 本稿では,生成パラダイムがもたらす課題について述べる。
生成的アウトプットと他の評価指標の整合性に関わる複雑さを強調します。
我々の貢献は、この生成パラダイムにおけるABSA評価に適した包括的ガイドラインの整備にある。
- 参考スコア(独自算出の注目度): 7.373480417322289
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the era of rapid evolution of generative language models within the realm of natural language processing, there is an imperative call to revisit and reformulate evaluation methodologies, especially in the domain of aspect-based sentiment analysis (ABSA). This paper addresses the emerging challenges introduced by the generative paradigm, which has moderately blurred traditional boundaries between understanding and generation tasks. Building upon prevailing practices in the field, we analyze the advantages and shortcomings associated with the prevalent ABSA evaluation paradigms. Through an in-depth examination, supplemented by illustrative examples, we highlight the intricacies involved in aligning generative outputs with other evaluative metrics, specifically those derived from other tasks, including question answering. While we steer clear of advocating for a singular and definitive metric, our contribution lies in paving the path for a comprehensive guideline tailored for ABSA evaluations in this generative paradigm. In this position paper, we aim to provide practitioners with profound reflections, offering insights and directions that can aid in navigating this evolving landscape, ensuring evaluations that are both accurate and reflective of generative capabilities.
- Abstract(参考訳): 自然言語処理の領域における生成言語モデルの急速な進化の時代には、特にアスペクトベースの感情分析(ABSA)の領域において、評価方法論を再検討し、再構築する義務がある。
本稿では,従来の理解課題と生成課題の境界線を緩やかに曖昧にしている生成パラダイムがもたらす課題について論じる。
この分野で広く普及している実践に基づいて、ABSA評価パラダイムに関連する利点と欠点を分析した。
具体例で補足した詳細な調査を通じて、生成的アウトプットと他の評価指標、特に質問応答を含む他のタスクから派生した指標の整合に関する複雑さを強調した。
我々は、特異かつ決定的なメートル法を提唱することを明確にする一方で、この生成パラダイムにおけるABSA評価に適した包括的なガイドラインの道を開くことに貢献する。
本稿では,この発展途上の景観をナビゲートし,正確かつ再現性に富む評価を確実にするための洞察と方向性を実践者に提供することを目的としている。
関連論文リスト
- Single Ground Truth Is Not Enough: Add Linguistic Variability to Aspect-based Sentiment Analysis Evaluation [41.66053021998106]
アスペクトベース感情分析(ABSA)は、人間の言語から感情を抽出する上で困難な課題である。
このタスクの現在の評価手法は、表面形が異なる意味論的に等価な予測をペナルティ化して、単一の真実に対する答えを制限することが多い。
我々は、アスペクトと意見の項に対して、代替の有効なレスポンスで既存のテストセットを拡張する、新しく完全に自動化されたパイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-13T11:48:09Z) - A Comprehensive Survey on Evidential Deep Learning and Its Applications [64.83473301188138]
Evidential Deep Learning (EDL)は、単一のフォワードパスで最小限の追加計算で信頼性の高い不確実性推定を提供する。
まず、主観的論理理論であるEDLの理論的基礎を掘り下げ、他の不確実性推定フレームワークとの区別について議論する。
さまざまな機械学習パラダイムや下流タスクにまたがる広範な応用について詳しく述べる。
論文 参考訳(メタデータ) (2024-09-07T05:55:06Z) - Goodhart's Law Applies to NLP's Explanation Benchmarks [57.26445915212884]
ERASER(Comprehensiveness and sufficiency)メトリクスとEVAL-X(EVAL-X)メトリクスの2つのセットを批判的に検討する。
実験結果の予測や説明を変えることなく,モデル全体の包括性と充足率を劇的に向上させることができることを示す。
我々の結果は、現在のメトリクスが説明可能性の研究をガイドする能力に疑問を呈し、これらのメトリクスが正確に捉えるものを再評価する必要性を強調します。
論文 参考訳(メタデータ) (2023-08-28T03:03:03Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
サンプルが少ない新しいサブカテゴリを認識することは、コンピュータビジョンにおいて不可欠で挑戦的な研究課題である。
既存の文献は、ローカルベースの表現アプローチを採用することでこの問題に対処している。
本稿では,ロバスト・サリエンシ・アウェア蒸留法(RSaD)を提案する。
論文 参考訳(メタデータ) (2023-05-12T00:13:17Z) - Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural
Language Generation [68.9440575276396]
この調査は、人間のフィードバックを利用して自然言語生成を改善した最近の研究の概要を提供することを目的としている。
まず、フィードバックの形式化を包括的に導入し、この形式化に続いて既存の分類学研究を特定・整理する。
第二に、フィードバックを形式や目的によってどのように記述するかを議論し、フィードバック(トレーニングやデコード)を直接使用したり、フィードバックモデルをトレーニングしたりするための2つのアプローチについて取り上げる。
第3に、AIフィードバックの生まれたばかりの分野の概要を紹介します。これは、大きな言語モデルを利用して、一連の原則に基づいて判断し、必要最小限にします。
論文 参考訳(メタデータ) (2023-05-01T17:36:06Z) - Towards explainable evaluation of language models on the semantic
similarity of visual concepts [0.0]
本稿では,視覚語彙の意味的類似性に焦点をあて,ハイパフォーマンスな事前学習言語モデルの振る舞いを考察する。
まず、検索したインスタンスの概念的品質を理解するために必要となる、説明可能な評価指標の必要性に対処する。
第二に、健全なクエリセマンティクスに対する敵対的な介入は、不透明なメトリクスの脆弱性を露呈し、学習された言語表現におけるパターンを強調します。
論文 参考訳(メタデータ) (2022-09-08T11:40:57Z) - BERT-ASC: Auxiliary-Sentence Construction for Implicit Aspect Learning in Sentiment Analysis [4.522719296659495]
本稿ではアスペクト分類とアスペクトベース感情サブタスクに対処する統合フレームワークを提案する。
コーパスのセマンティック情報を用いて暗黙的側面のための補助文を構築する機構を導入する。
次に、BERTはアスペクト自体ではなく、この補助文に応答してアスペクト固有の表現を学ぶことを推奨する。
論文 参考訳(メタデータ) (2022-03-22T13:12:27Z) - Exploring Conditional Text Generation for Aspect-Based Sentiment
Analysis [28.766801337922306]
アスペクトベース感情分析(Aspect-based sentiment analysis、ABSA)は、ユーザ生成レビューを処理して評価対象を決定するNLPタスクである。
本稿では,ABSAを抽象的な要約型条件文生成タスクに変換し,目的,側面,極性を用いて補助文を生成することを提案する。
論文 参考訳(メタデータ) (2021-10-05T20:08:25Z) - Deep Context- and Relation-Aware Learning for Aspect-based Sentiment
Analysis [3.7175198778996483]
本研究では,深い文脈情報を持つサブタスク間での対話的関係を実現するディープ・コンテクスチュアライズド・リレーア・アウェア・ネットワーク(DCRAN)を提案する。
DCRANは3つの広く使用されているベンチマークにおいて、従来の最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-06-07T17:16:15Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
分析による特徴に基づく説明の新たな評価基準を確立する。
我々は、緩やかに必要であり、予測に十分である新しい説明を得る。
我々は、現在の予測をターゲットクラスに移動させる一連の特徴を抽出するために、説明を拡張します。
論文 参考訳(メタデータ) (2020-05-31T05:52:05Z) - A Revised Generative Evaluation of Visual Dialogue [80.17353102854405]
本稿では,VisDialデータセットの改訂評価手法を提案する。
モデルが生成した回答と関連する回答の集合のコンセンサスを測定する。
DenseVisDialとして改訂された評価スキームのこれらのセットとコードをリリースする。
論文 参考訳(メタデータ) (2020-04-20T13:26:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。