Towards Robotic Knee Arthroscopy: Multi-Scale Network for Tissue-Tool
Segmentation
- URL: http://arxiv.org/abs/2110.02657v1
- Date: Wed, 6 Oct 2021 11:20:01 GMT
- Title: Towards Robotic Knee Arthroscopy: Multi-Scale Network for Tissue-Tool
Segmentation
- Authors: Shahnewaz Ali, Prof. Ross Crawford, Dr. Frederic Maire, Assoc. Prof.
Ajay K. Pandey
- Abstract summary: We present a densely connected shape aware multi-scale segmentation model which captures multi-scale features and integrates shape features to achieve tissue-tool segmentations.
With the publicly available polyp dataset our proposed model achieved 5.09 % accuracy improvement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tissue awareness has a great demand to improve surgical accuracy in minimally
invasive procedures. In arthroscopy, it is one of the challenging tasks due to
surgical sites exhibit limited features and textures. Moreover, arthroscopic
surgical video shows high intra-class variations. Arthroscopic videos are
recorded with endoscope known as arthroscope which records tissue structures at
proximity, therefore, frames contain minimal joint structure. As consequences,
fully conventional network-based segmentation model suffers from long- and
short- term dependency problems. In this study, we present a densely connected
shape aware multi-scale segmentation model which captures multi-scale features
and integrates shape features to achieve tissue-tool segmentations. The model
has been evaluated with three distinct datasets. Moreover, with the publicly
available polyp dataset our proposed model achieved 5.09 % accuracy
improvement.
Related papers
- FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
arXiv Detail & Related papers (2024-03-18T19:13:02Z) - An Automated Real-Time Approach for Image Processing and Segmentation of Fluoroscopic Images and Videos Using a Single Deep Learning Network [2.752817022620644]
The potential of using machine learning for image segmentation in total knee lies in its ability to improve segmentation accuracy, automate the process, and provide real-time assistance to surgeons.
This paper proposes a methodology to use deep learning for robust real-time total knee image segmentation.
The deep learning model, trained on a large dataset, demonstrates outstanding performance in accurately segmenting both the implanted femur and tibia.
arXiv Detail & Related papers (2024-01-23T05:00:02Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
We propose a novel visual-kinematics graph learning framework to accurately segment the instrument tip given various surgical procedures.
Specifically, a graph learning framework is proposed to encode relational features of instrument parts from both image and kinematics.
A cross-modal contrastive loss is designed to incorporate robust geometric prior from kinematics to image for tip segmentation.
arXiv Detail & Related papers (2023-09-02T14:52:58Z) - AttResDU-Net: Medical Image Segmentation Using Attention-based Residual
Double U-Net [0.0]
This paper proposes an attention-based residual Double U-Net architecture (AttResDU-Net) that improves on the existing medical image segmentation networks.
We conducted experiments on three datasets: CVC Clinic-DB, ISIC 2018, and the 2018 Data Science Bowl datasets and achieved Dice Coefficient scores of 94.35%, 91.68%, and 92.45% respectively.
arXiv Detail & Related papers (2023-06-25T14:28:08Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
Tissues [52.886545681833596]
LerPlane is a novel method for fast and accurate reconstruction of surgical scenes under a single-viewpoint setting.
LerPlane treats surgical procedures as 4D volumes and factorizes them into explicit 2D planes of static and dynamic fields.
LerPlane shares static fields, significantly reducing the workload of dynamic tissue modeling.
arXiv Detail & Related papers (2023-05-31T14:38:35Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - NanoNet: Real-Time Polyp Segmentation in Video Capsule Endoscopy and
Colonoscopy [0.6125117548653111]
We propose NanoNet, a novel architecture for the segmentation of video capsule endoscopy and colonoscopy images.
Our proposed architecture allows real-time performance and has higher segmentation accuracy compared to other more complex ones.
arXiv Detail & Related papers (2021-04-22T15:40:28Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z) - Towards Augmented Reality-based Suturing in Monocular Laparoscopic
Training [0.5707453684578819]
The paper proposes an Augmented Reality environment with quantitative and qualitative visual representations to enhance laparoscopic training outcomes performed on a silicone pad.
This is enabled by a multi-task supervised deep neural network which performs multi-class segmentation and depth map prediction.
The network achieves a dice score of 0.67 for surgical needle segmentation, 0.81 for needle holder instrument segmentation and a mean absolute error of 6.5 mm for depth estimation.
arXiv Detail & Related papers (2020-01-19T19:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.