Early Diagnosis of Retinal Blood Vessel Damage via Deep Learning-Powered
Collective Intelligence Models
- URL: http://arxiv.org/abs/2210.09449v1
- Date: Mon, 17 Oct 2022 21:38:38 GMT
- Title: Early Diagnosis of Retinal Blood Vessel Damage via Deep Learning-Powered
Collective Intelligence Models
- Authors: Pranjal Bhardwaj, Prajjwal Gupta, Thejineaswar Guhan and Kathiravan
Srinivasan
- Abstract summary: The power of swarm algorithms is used to search for various combinations of convolutional, pooling, and normalization layers to provide the best model for the task.
The best TDCN model achieves an accuracy of 90.3%, AUC ROC of 0.956, and a Cohen score of 0.967.
- Score: 0.3670422696827525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early diagnosis of retinal diseases such as diabetic retinopathy has had the
attention of many researchers. Deep learning through the introduction of
convolutional neural networks has become a prominent solution for image-related
tasks such as classification and segmentation. Most tasks in image
classification are handled by deep CNNs pretrained and evaluated on imagenet
dataset. However, these models do not always translate to the best result on
other datasets. Devising a neural network manually from scratch based on
heuristics may not lead to an optimal model as there are numerous
hyperparameters in play. In this paper, we use two nature-inspired swarm
algorithms: particle swarm optimization (PSO) and ant colony optimization (ACO)
to obtain TDCN models to perform classification of fundus images into severity
classes. The power of swarm algorithms is used to search for various
combinations of convolutional, pooling, and normalization layers to provide the
best model for the task. It is observed that TDCN-PSO outperforms imagenet
models and existing literature, while TDCN-ACO achieves faster architecture
search. The best TDCN model achieves an accuracy of 90.3%, AUC ROC of 0.956,
and a Cohen kappa score of 0.967. The results were compared with the previous
studies to show that the proposed TDCN models exhibit superior performance.
Related papers
- Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN [3.3909577600092122]
We propose a new Cycle-Consistent Generative Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image denoiseing.
Our model consists of two Cycle-GAN networks with imporved generator, descriminator and wasserstein loss to achieve good training stability and better performance.
arXiv Detail & Related papers (2022-05-02T07:38:19Z) - An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification [0.5424799109837065]
This paper introduces an end-to-end deep convolution neural network (CNN) for classifying ILDs patterns.
The proposed model comprises four convolutional layers with different kernel sizes and Rectified Linear Unit (ReLU) activation function.
A dataset consisting of 21328 image patches of 128 CT scans with five classes is taken to train and assess the proposed model.
arXiv Detail & Related papers (2022-04-21T06:36:10Z) - Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
Recent advances have shown that the convolutional Neural Network (CNN) architectures can be used to design a Computer Aided Diagnostic (CAD) System for breast cancer detection.
We consider some contemporary CNN models for binary classification of breast histopathology images.
We have validated the trained CNN networks on a publicly available BreaKHis dataset, for 200x and 400x magnified histopathology images.
arXiv Detail & Related papers (2022-01-04T03:09:40Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Metastatic Cancer Image Classification Based On Deep Learning Method [7.832709940526033]
We propose a noval method which combines the deep learning algorithm in image classification, the DenseNet169 framework and Rectified Adam optimization algorithm.
Our model achieves superior performance over the other classical convolutional neural networks approaches, such as Vgg19, Resnet34, Resnet50.
arXiv Detail & Related papers (2020-11-13T16:04:39Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.