Patch-Based and Non-Patch-Based inputs Comparison into Deep Neural Models: Application for the Segmentation of Retinal Diseases on Optical Coherence Tomography Volumes
- URL: http://arxiv.org/abs/2501.13970v1
- Date: Wed, 22 Jan 2025 10:22:08 GMT
- Title: Patch-Based and Non-Patch-Based inputs Comparison into Deep Neural Models: Application for the Segmentation of Retinal Diseases on Optical Coherence Tomography Volumes
- Authors: Khaled Al-Saih, Fares Al-Shargie, Mohammed Isam Al-hiyali, Reham Alhejaili,
- Abstract summary: Approaching 170 million persons wide-ranging have been spotted with AMD, a figure anticipated to rise to 288 million by 2040.
Deep learning networks have shown promising results in both image and pixel-level 2D scan classification.
Highest score for a patch-based model in the DSC metric was 0.88 in comparison to the score of 0.71 for the same model in non-patch-based for SRF fluid segmentation.
- Score: 0.3749861135832073
- License:
- Abstract: Worldwide, sight loss is commonly occurred by retinal diseases, with age-related macular degeneration (AMD) being a notable facet that affects elderly patients. Approaching 170 million persons wide-ranging have been spotted with AMD, a figure anticipated to rise to 288 million by 2040. For visualizing retinal layers, optical coherence tomography (OCT) dispenses the most compelling non-invasive method. Frequent patient visits have increased the demand for automated analysis of retinal diseases, and deep learning networks have shown promising results in both image and pixel-level 2D scan classification. However, when relying solely on 2D data, accuracy may be impaired, especially when localizing fluid volume diseases. The goal of automatic techniques is to outperform humans in manually recognizing illnesses in medical data. In order to further understand the benefit of deep learning models, we studied the effects of the input size. The dice similarity coefficient (DSC) metric showed a human performance score of 0.71 for segmenting various retinal diseases. Yet, the deep models surpassed human performance to establish a new era of advancement of segmenting the diseases on medical images. However, to further improve the performance of the models, overlapping patches enhanced the performance of the deep models compared to feeding the full image. The highest score for a patch-based model in the DSC metric was 0.88 in comparison to the score of 0.71 for the same model in non-patch-based for SRF fluid segmentation. The objective of this article is to show a fair comparison between deep learning models in relation to the input (Patch-Based vs. NonPatch-Based).
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging [33.23991248643144]
We present a thorough literature review, highlighting the state of machine learning techniques across diverse organs.
Our goal is to provide a foundation on the topic and identify a robust baseline model for application to vascular segmentation in a new imaging modality.
HiP CT enables 3D imaging of complete organs at an unprecedented resolution of ca. 20mm per voxel.
arXiv Detail & Related papers (2023-11-22T11:15:38Z) - Retinal Image Segmentation with Small Datasets [25.095695898777656]
Many eye diseases like Diabetic Macular Edema (DME), Age-related Macular Degeneration (AMD) and Glaucoma manifest in the retina, can cause irreversible blindness or severely impair the central version.
The Optical Coherence Tomography ( OCT), a 3D scan of the retina, can be used to diagnose and monitor changes in the retinal anatomy.
Many Deep Learning (DL) methods have shared the success of developing an automated tool to monitor pathological changes in the retina.
arXiv Detail & Related papers (2023-03-09T08:32:14Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
We propose an ensemble method to automatically grade Diabetic retinopathy (DR) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022.
First, we adopt the state-of-the-art classification networks, and train them to grade UW- OCTA images with different splits of the available dataset.
Ultimately, we obtain 25 models, of which, the top 16 models are selected and ensembled to generate the final predictions.
arXiv Detail & Related papers (2022-12-12T22:06:47Z) - Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images [1.299941371793082]
Age-related macular degeneration (AMD) is the most common cause of blindness in developed countries, especially in people over 60 years of age.
Recent developments in deep learning have provided a unique opportunity for the development of fully automated diagnosis frameworks.
We propose a multi-scale convolutional neural network (CNN) capable of distinguishing pathologies using receptive fields with various sizes.
arXiv Detail & Related papers (2021-10-06T18:20:58Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - StyPath: Style-Transfer Data Augmentation For Robust Histology Image
Classification [6.690876060631452]
We propose a novel pipeline to build robust deep neural networks for AMR classification based on StyPath.
Each image was generated in 1.84 + 0.03 seconds using a single GTX V TITAN and pytorch.
Our results imply that our style-transfer augmentation technique improves histological classification performance.
arXiv Detail & Related papers (2020-07-09T18:02:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.