論文の概要: TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity,
Geo, and Gender Labels
- arxiv url: http://arxiv.org/abs/2110.03664v1
- Date: Mon, 4 Oct 2021 06:17:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 15:37:11.961747
- Title: TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity,
Geo, and Gender Labels
- Title(参考訳): tbcov: 感情、実体、地理、性別のラベルが付いた20億の多言語ツイート
- Authors: Muhammad Imran, Umair Qazi, Ferda Ofli
- Abstract要約: この研究は、新型コロナウイルス(COVID-19)のパンデミックに関連する20億以上の多言語ツイートを1年以上にわたって収集した大規模なTwitterデータセットTBCOVを提示する。
いくつかの最先端のディープラーニングモデルは、感情ラベル、名前付きエンティティ、人物の言及、組織、場所、ユーザータイプ、性別情報など、重要な属性でデータを強化するために使用される。
我々の感情と傾向分析は興味深い洞察を示し、TBCOVが重要なトピックを幅広くカバーしていることを確認する。
- 参考スコア(独自算出の注目度): 5.267993069044648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread usage of social networks during mass convergence events, such
as health emergencies and disease outbreaks, provides instant access to
citizen-generated data that carry rich information about public opinions,
sentiments, urgent needs, and situational reports. Such information can help
authorities understand the emergent situation and react accordingly. Moreover,
social media plays a vital role in tackling misinformation and disinformation.
This work presents TBCOV, a large-scale Twitter dataset comprising more than
two billion multilingual tweets related to the COVID-19 pandemic collected
worldwide over a continuous period of more than one year. More importantly,
several state-of-the-art deep learning models are used to enrich the data with
important attributes, including sentiment labels, named-entities (e.g.,
mentions of persons, organizations, locations), user types, and gender
information. Last but not least, a geotagging method is proposed to assign
country, state, county, and city information to tweets, enabling a myriad of
data analysis tasks to understand real-world issues. Our sentiment and trend
analyses reveal interesting insights and confirm TBCOV's broad coverage of
important topics.
- Abstract(参考訳): 公衆の意見、感情、緊急の要求、状況報告に関する豊富な情報を運ぶ市民が生成したデータに即座にアクセスすることができる。
このような情報は、当局が緊急状況を理解し、それに応じて反応するのに役立つ。
さらに、ソーシャルメディアは、誤情報や偽情報に取り組む上で重要な役割を担っている。
tbcovは、新型コロナウイルス(covid-19)パンデミックに関連する20億以上の多言語ツイートを1年以上かけて収集した大規模なtwitterデータセットだ。
さらに重要なことに、いくつかの最先端のディープラーニングモデルは、感情ラベル、名前付きエンティティ(人、組織、場所の言及など)、ユーザータイプ、性別情報など、重要な属性でデータを豊かにするために使用される。
最後に、国、州、郡、都市情報をつぶやきに割り当てるジオタグ方式が提案され、多くのデータ分析タスクが現実世界の問題を理解することができる。
私たちの感情とトレンド分析は興味深い洞察を示し、tbcovの幅広い重要なトピックをカバーしています。
関連論文リスト
- News and Misinformation Consumption in Europe: A Longitudinal
Cross-Country Perspective [49.1574468325115]
本研究では,欧州4カ国における情報消費について検討した。
フランス、ドイツ、イタリア、イギリスのニュースメディアアカウントから3年間のTwitter活動を分析した。
信頼性のある情報源が情報ランドスケープを支配していることを示しているが、信頼性の低いコンテンツは依然としてすべての国に存在している。
論文 参考訳(メタデータ) (2023-11-09T16:22:10Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - EDSA-Ensemble: an Event Detection Sentiment Analysis Ensemble
Architecture [63.85863519876587]
Sentiment Analysisを使って、イベントに属する各メッセージの極性やイベント全体を理解することで、オンラインソーシャルネットワークにおける重要なトレンドやダイナミクスに関する一般的な感情や個人の感情をよりよく理解することができます。
本研究では,ソーシャルメディアから現在起きているイベントの極性検出を改善するために,イベント検出と知覚分析を用いた新しいアンサンブルアーキテクチャEDSA-Ensembleを提案する。
論文 参考訳(メタデータ) (2023-01-30T11:56:08Z) - Extracting Feelings of People Regarding COVID-19 by Social Network
Mining [0.0]
英語における新型コロナウイルス関連ツイートのデータセットが収集される。
2020年3月23日から6月23日までに200万件以上のツイートが分析されている。
論文 参考訳(メタデータ) (2021-10-12T16:45:33Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
ソーシャルメディアプラットフォームは、新型コロナウイルス(COVID-19)に関する世界的な会話の手段として機能している。
本稿では,パンデミックを取り巻くソーシャルメディア会話の重要コンテンツと特徴の分析,マイニング,追跡のための枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-22T00:45:50Z) - I-AID: Identifying Actionable Information from Disaster-related Tweets [0.0]
ソーシャルメディアは、被災者、寄付、支援要請に関する貴重なデータを提供することによって、災害管理において重要な役割を担っている。
ツイートを自動的にマルチラベル情報タイプに分類するマルチモデルアプローチであるI-AIDを提案する。
以上の結果から,I-AIDはTREC-ISデータセットおよびCOVID-19 Tweetsにおいて,平均F1得点の6%,+4%において最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-08-04T19:07:50Z) - Fighting the COVID-19 Infodemic in Social Media: A Holistic Perspective
and a Call to Arms [42.7332883578842]
新型コロナウイルス(COVID-19)のパンデミックが勃発すると、人々はソーシャルメディアに、タイムリーな情報を読み、共有するよう促した。
また、医療と政治の誤報と偽情報の新しいブレンドがあり、これが最初の世界的なインフォデミックを引き起こした。
これは、ジャーナリスト、ファクトチェッカー、政策立案者、政府機関、ソーシャルメディアプラットフォーム、社会全体の観点からの総合的なアプローチを必要とする複雑な問題である。
論文 参考訳(メタデータ) (2020-07-15T21:18:30Z) - GeoCoV19: A Dataset of Hundreds of Millions of Multilingual COVID-19
Tweets with Location Information [4.541389211258011]
GeoCoV19は、2020年2月1日から90日間に5億2400万件の多言語ツイートが投稿された大規模なTwitterデータセットです。
我々は、この大規模かつ多言語で位置決めされたソーシャルメディアデータは、この前例のない世界的な危機に社会がどう対処しているかを評価する研究コミュニティに力を与えることができると仮定する。
論文 参考訳(メタデータ) (2020-05-22T13:30:42Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
2019年の推計295億人が世界中でソーシャルメディアを利用している。
コロナウイルスの流行は、ソーシャルメディアの津波を引き起こした。
本稿では,Twitterから収集したデータに基づく大規模研究について述べる。
論文 参考訳(メタデータ) (2020-05-18T15:53:13Z) - Fighting the COVID-19 Infodemic: Modeling the Perspective of
Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the
Society [37.9389191670008]
新型コロナウイルスは世界保健機関(WHO)にとって最も重要な分野の一つだと宣言されている。
このインフォデミックと戦うことは、世界保健機関(WHO)の最も重要な焦点の1つと宣言されている。
詳細な偽情報分析のために,手動で注釈付きツイート16Kの大規模なデータセットをリリースする。
論文 参考訳(メタデータ) (2020-04-30T18:04:20Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
偽ニュースを含む偽ニュースは 爆発的な成長により グローバルな現象になっています
偽情報や偽ニュースを検知する最近の進歩にもかかわらず、その複雑さ、多様性、多様性、事実チェックやアノテーションのコストが原因で、いまだに自明ではない。
論文 参考訳(メタデータ) (2020-01-02T21:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。