From Classical to quantum stochastic process
- URL: http://arxiv.org/abs/2110.03668v2
- Date: Tue, 28 Jun 2022 19:07:57 GMT
- Title: From Classical to quantum stochastic process
- Authors: Gustavo Montes, Soham Biswas and Thomas Gorin
- Abstract summary: We construct quantum analogs starting from classical processes, by replacing random which path decisions with superpositions of all paths.
In spite of their transient nature, these coherences can change the scaling behavior of classical observables.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper for the first time, we construct quantum analogs starting from
classical stochastic processes, by replacing random which path decisions with
superpositions of all paths. This procedure typically leads to non-unitary
quantum evolution, where coherences are continuously generated and destroyed.
In spite of their transient nature, these coherences can change the scaling
behavior of classical observables. Using the zero temperature Glauber dynamics
in a linear Ising spin chain, we find quantum analogs with different domain
growth exponents. In some cases, this exponent is even smaller than for the
original classical process, which means that coherence can play an important
role to speed up the relaxation process.
Related papers
- Symmetry operations and Critical Behaviour in Classical to Quantum Stochastic Processes [0.0]
We generate a large class of self contained quantum extensions by operations.
We show that the relaxation processes for different quantum extensions are different and that is supported by the measure of coherence.
arXiv Detail & Related papers (2024-09-14T03:01:54Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Different routes to the classical limit of backflow [0.0]
This work is to analyze the backflow effect in the light of the underlying intrinsic decoherence and the dissipative dynamics.
In all the cases treated here, backflow is gradually suppressed as the intrinsic decoherence process is developing.
arXiv Detail & Related papers (2022-11-16T17:18:09Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Free to Harmonic Unitary Transformations in Quantum and Koopman Dynamics [0.0]
We show that an equivalent transformation can be performed for classical systems in the context of Koopman von-Neumann (KvN) dynamics.
We further extend this mapping to dissipative evolutions in both the quantum and classical cases, and show that this mapping imparts an identical time-dependent scaling on the dissipation parameters for both types of dynamics.
arXiv Detail & Related papers (2022-07-19T18:59:01Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - From the Heisenberg to the Schr\"{o}dinger Picture: Quantum Stochastic
Processes and Process Tensors [0.0]
A general theory of quantum processes was formulated by Accardi, Frigerio and Lewis in 1982.
This paper gives an exposition of quantum processes and the process tensor formalism to the quantum theory of probabilistic quantum processes.
arXiv Detail & Related papers (2021-09-20T01:04:00Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.