論文の概要: Empathetic Response Generation through Graph-based Multi-hop Reasoning
on Emotional Causality
- arxiv url: http://arxiv.org/abs/2110.04614v1
- Date: Sat, 9 Oct 2021 17:12:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-12 17:08:26.429833
- Title: Empathetic Response Generation through Graph-based Multi-hop Reasoning
on Emotional Causality
- Title(参考訳): グラフに基づくマルチホップ推論による情緒応答生成
- Authors: Jiashuo Wang, Wenjie LI, Peiqin Lin and Feiteng Mu
- Abstract要約: 共感応答生成は、ユーザの感情を理解し、それを適切に応答することを目的としている。
既存の作業の多くは、単に感情が何であるかに焦点を合わせ、どのように感情が誘発されるかを無視します。
我々は、感情的因果関係、すなわち、ユーザーがどのような感情を表現しているか、なぜユーザーがそのような感情を持っているのかを考える。
- 参考スコア(独自算出の注目度): 13.619616838801006
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Empathetic response generation aims to comprehend the user emotion and then
respond to it appropriately. Most existing works merely focus on what the
emotion is and ignore how the emotion is evoked, thus weakening the capacity of
the model to understand the emotional experience of the user for generating
empathetic responses. To tackle this problem, we consider the emotional
causality, namely, what feelings the user expresses (i.e., emotion) and why the
user has such feelings (i.e., cause). Then, we propose a novel graph-based
model with multi-hop reasoning to model the emotional causality of the
empathetic conversation. Finally, we demonstrate the effectiveness of our model
on EMPATHETICDIALOGUES in comparison with several competitive models.
- Abstract(参考訳): 共感的反応生成は、ユーザの感情を理解し、適切に反応することを目的としている。
既存の作業の多くは、感情が何であるかにのみ焦点を合わせ、感情の誘発方法を無視し、それによってモデルの能力を弱め、共感的な反応を生み出すユーザの感情経験を理解する。
この問題に取り組むために、感情因果関係、すなわち、ユーザがどのような感情(すなわち感情)を表現しているか、なぜユーザーがそのような感情(すなわち、原因)を持っているのかを考える。
そこで本研究では,共感会話の感情因果関係をモデル化するマルチホップ推論を用いた新しいグラフモデルを提案する。
最後に, EMPATHETICDIALOGUESにおけるモデルの有効性を, いくつかの競合モデルと比較した。
関連論文リスト
- ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
CEE(Causal Emotion Entailment)は、ターゲット発話で表現される感情を刺激する会話における因果発話を特定することを目的としている。
CEEにおける現在の研究は、主に会話のセマンティックな相互作用と感情的な相互作用をモデル化することに焦点を当てている。
本研究では,会話中の感情表現から刺激を推測するために,ステップバイステップの推論手法である感情・因果関係(ECR-Chain)を導入する。
論文 参考訳(メタデータ) (2024-05-17T15:45:08Z) - CTSM: Combining Trait and State Emotions for Empathetic Response Model [2.865464162057812]
共感応答生成は、対話システムに話者の感情を知覚し、それに応じて共感応答を生成する。
我々は,共感反応モデル(CTSM)のためのトラストと状態感情の組み合わせを提案する。
対話における感情を十分に知覚するために、まず特徴と状態の感情の埋め込みを構築し、エンコードする。
感情表現を誘導する感情誘導モジュールにより、感情知覚能力をさらに強化する。
論文 参考訳(メタデータ) (2024-03-22T10:45:13Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
EmotionPromptはAIモデルの性能を向上し、EmotionAttackはそれを妨げうることを示す。
EmotionDecodeによると、AIモデルは人間の脳内のドーパミンのメカニズムに似た感情的な刺激を理解することができる。
論文 参考訳(メタデータ) (2023-12-18T11:19:45Z) - E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation [33.57399405783864]
本稿では,感情相関を改良した共感対話生成フレームワークを提案する。
具体的には、文脈に基づく感情の相互作用を捉えるために、マルチレゾリューション感情グラフを考案した。
そこで我々は,感情相関強化デコーダを提案し,新しい相関認識アグリゲーションとソフト/ハード戦略を提案する。
論文 参考訳(メタデータ) (2023-11-25T12:47:39Z) - Empathetic Response Generation via Emotion Cause Transition Graph [29.418144401849194]
共感的対話は、感情的要因(例えば、感情の状態)と認知的要因(例えば、感情の原因)の両方の知覚を必要とする人間のような行動である。
共感対話における2つのターン間の感情原因の自然な遷移を明示的にモデル化する感情原因遷移グラフを提案する。
このグラフでは、次のターンで生じる感情の概念語を、特殊に設計された概念認識デコーダによって予測し、使用し、共感的な応答を生成する。
論文 参考訳(メタデータ) (2023-02-23T05:51:17Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
共感的対話モデルは、通常、感情的な側面のみを考慮するか、孤立して認知と愛情を扱う。
共感的対話生成のためのCASEモデルを提案する。
論文 参考訳(メタデータ) (2022-08-18T14:28:38Z) - Empathetic Response Generation with State Management [32.421924357260075]
共感的反応生成の目標は、会話における感情を知覚し表現する対話システムの能力を高めることである。
感情や意図を含む複数の状態情報を同時に考察できる新しい共感応答生成モデルを提案する。
実験の結果、異なる情報を動的に管理することは、モデルがより共感的な反応を生成するのに役立つことが示された。
論文 参考訳(メタデータ) (2022-05-07T16:17:28Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Infusing Multi-Source Knowledge with Heterogeneous Graph Neural Network
for Emotional Conversation Generation [25.808037796936766]
実世界の会話では,マルチソース情報から感情を直感的に知覚する。
感情的会話生成のための異種グラフモデルを提案する。
実験結果は,本モデルがマルチソース知識から感情を効果的に知覚できることを示した。
論文 参考訳(メタデータ) (2020-12-09T06:09:31Z) - MIME: MIMicking Emotions for Empathetic Response Generation [82.57304533143756]
共感応答生成への現在のアプローチは、入力テキストで表現された感情の集合を平らな構造として見る。
共感反応は, 肯定的, 否定的, 内容に応じて, ユーザの感情を様々な程度に模倣することが多い。
論文 参考訳(メタデータ) (2020-10-04T00:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。