論文の概要: Video-based cattle identification and action recognition
- arxiv url: http://arxiv.org/abs/2110.07103v1
- Date: Thu, 14 Oct 2021 00:55:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-15 14:50:16.368378
- Title: Video-based cattle identification and action recognition
- Title(参考訳): ビデオによる牛の識別と行動認識
- Authors: Chuong Nguyen, Dadong Wang, Karl Von Richter, Philip Valencia, Flavio
A. P. Alvarenga, Gregory Bishop-Hurley
- Abstract要約: 家畜の行動を自動的に分析し,牛の福祉をモニタリングする作業プロトタイプを実演する。
深層学習モデルは農場で取得したビデオで開発、テストされ、牛の識別には81.2%の精度が達成されている。
- 参考スコア(独自算出の注目度): 0.910162205512083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate a working prototype for the monitoring of cow welfare by
automatically analysing the animal behaviours. Deep learning models have been
developed and tested with videos acquired in a farm, and a precision of 81.2\%
has been achieved for cow identification. An accuracy of 84.4\% has been
achieved for the detection of drinking events, and 94.4\% for the detection of
grazing events. Experimental results show that the proposed deep learning
method can be used to identify the behaviours of individual animals to enable
automated farm provenance. Our raw and ground-truth dataset will be released as
the first public video dataset for cow identification and action recognition.
Recommendations for further development are also provided.
- Abstract(参考訳): 家畜の行動を自動的に分析し,牛の福祉をモニタリングする作業プロトタイプを実演する。
ディープラーニングモデルの開発とテストは、農場で取得したビデオを用いて行われ、牛の識別には81.2\%の精度が達成されている。
飲酒イベントの検出には84.4\%、放牧イベントの検出には94.4\%の精度が達成されている。
実験の結果,提案手法により個体の行動の識別が可能となり,農作物の自動生産が可能となった。
当社のrawデータセットとground-truthデータセットは、牛の識別と行動認識のための最初の公開ビデオデータセットとしてリリースされる予定です。
さらなる発展のための勧告も提供される。
関連論文リスト
- MultiCamCows2024 -- A Multi-view Image Dataset for AI-driven Holstein-Friesian Cattle Re-Identification on a Working Farm [2.9391768712283772]
複数のカメラで撮影されたMultiCamCows2024は、ホルシュタイン・フリース種牛の生体認証のための大規模画像データセットである。
データセットは90頭の牛の101,329枚の画像と、基盤となるCCTVの映像で構成されている。
本研究の枠組みは, トラッカーレットの完全自動識別を可能にすることを示し, トラッカーレットの完全性の簡易な検証のみを禁止している。
論文 参考訳(メタデータ) (2024-10-16T15:58:47Z) - Distillation-guided Representation Learning for Unconstrained Gait Recognition [50.0533243584942]
本研究では,屋外シナリオにおける人間認証のためのGADER(GAit Detection and Recognition)フレームワークを提案する。
GADERは、歩行情報を含むフレームのみを使用する新しい歩行認識手法により識別的特徴を構築する。
室内および屋外のデータセットに一貫した改善を示すため,複数の歩行ベースライン(SoTA)について評価を行った。
論文 参考訳(メタデータ) (2023-07-27T01:53:57Z) - CVB: A Video Dataset of Cattle Visual Behaviors [13.233877352490923]
牛の行動認識のための既存のデータセットは、ほとんど小さく、明確に定義されたラベルがないか、非現実的な制御環境で収集される。
キャトル・ビジュアル・ビヘイビアス (CVB) と呼ばれる新しいデータセットを導入し、502本のビデオクリップを15秒毎に撮影し、自然の照明条件で撮影し、11種類の視覚的に知覚できる牛の行動に注釈を付ける。
論文 参考訳(メタデータ) (2023-05-26T00:44:11Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
In-the-wildデータ収集に焦点をあてたユーザスタディにおいて,一般的な4つのアノテーション手法の評価と対比を行う実験的検討を行った。
実際の記録プロセス中に参加者がアノテートするユーザ主導のin situアノテーションと、各日の終わりに参加者が振り返ってアノテートするリコールメソッドの両方に対して、参加者は自身のアクティビティクラスと対応するラベルを選択できる柔軟性を持っていた。
論文 参考訳(メタデータ) (2023-05-15T16:02:56Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
本稿では,映像中の生物学的行動を検出するための,効率的なコンピュータビジョンと深層学習に基づく手法を提案する。
TempNetはエンコーダブリッジと残留ブロックを使用して、2段階の空間的、そして時間的、エンコーダでモデル性能を維持する。
本研究では,サブルフィッシュ (Anoplopoma fimbria) 幼虫の検出への応用を実証する。
論文 参考訳(メタデータ) (2022-11-17T23:55:12Z) - Segmentation Enhanced Lameness Detection in Dairy Cows from RGB and
Depth Video [8.906235809404189]
早期の乳腺検出は、農家が早期に病気に対処し、牛の状態を悪化させることによるネガティブな影響を避けるのに役立つ。
乳房から出る牛の短いクリップのデータセットを収集し,牛の乳腺の程度を注釈した。
我々は、トレーニング済みのニューラルネットワークを利用してビデオから識別的特徴を抽出し、その状態を示す各牛にバイナリスコアを割り当てる「健康」または「ラム」を提案する。
論文 参考訳(メタデータ) (2022-06-09T12:16:31Z) - RealGait: Gait Recognition for Person Re-Identification [79.67088297584762]
我々は,既存の映像人物の再識別課題からシルエットを抽出し,制約のない方法で歩く1,404人からなる新たな歩行データセットを構築した。
以上の結果から、実際の監視シナリオにおける歩行による認識は実現可能であり、その基盤となる歩行パターンが、実際にビデオの人物認識が機能する真の理由である可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-13T06:30:56Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
乱雑なホームケージ環境下で各マウスにユニークな識別子を時間をかけて発見し提供することを目的としている。
これは、(i)各マウスの視覚的特徴の区別の欠如、(ii)一定の閉塞を伴うシーンの密閉性のため、非常に難しい問題である。
本手法は, この動物識別問題に対して77%の精度を達成し, 動物が隠れているときの急激な検出を拒否することができる。
論文 参考訳(メタデータ) (2021-12-13T17:11:32Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - Dairy Cow rumination detection: A deep learning approach [0.8312466807725921]
交配行動は、畜産の発展と収量を追跡するための重要な変数です。
現代のアタッチメントデバイスは、牛にとって侵襲的で、ストレスがあり、不快である。
本研究では,CNN(Convolution Neural Network)に基づくディープラーニングモデルを用いた革新的なモニタリング手法を提案する。
論文 参考訳(メタデータ) (2021-01-07T07:33:32Z) - Visual Identification of Individual Holstein-Friesian Cattle via Deep
Metric Learning [8.784100314325395]
ホルシュタイン・フリーズ産の牛は、チューリングの反応拡散系から生じたものと類似した、個々の特性の白黒のコートパターンを視覚的に示す。
この研究は、畳み込みニューラルネットワークとディープメトリック学習技術を介して、個々のホルシュタイン・フリース人の視覚的検出と生体認証を自動化するために、これらの自然なマーキングを利用する。
論文 参考訳(メタデータ) (2020-06-16T14:41:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。