Distribution-Free Federated Learning with Conformal Predictions
- URL: http://arxiv.org/abs/2110.07661v1
- Date: Thu, 14 Oct 2021 18:41:17 GMT
- Title: Distribution-Free Federated Learning with Conformal Predictions
- Authors: Charles Lu, Jayasheree Kalpathy-Cramer
- Abstract summary: Federated learning aims to leverage separate institutional datasets while maintaining patient privacy.
Poor calibration and lack of interpretability may hamper widespread deployment of federated models into clinical practice.
We propose to address these challenges by incorporating an adaptive conformal framework into federated learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning has attracted considerable interest for collaborative
machine learning in healthcare to leverage separate institutional datasets
while maintaining patient privacy.
However, additional challenges such as poor calibration and lack of
interpretability may also hamper widespread deployment of federated models into
clinical practice and lead to user distrust or misuse of ML tools in
high-stakes clinical decision-making.
In this paper, we propose to address these challenges by incorporating an
adaptive conformal framework into federated learning to ensure
distribution-free prediction sets that provide coverage guarantees and
uncertainty estimates without requiring any additional modifications to the
model or assumptions.
Empirical results on the MedMNIST medical imaging benchmark demonstrate our
federated method provide tighter coverage in lower average cardinality over
local conformal predictions on 6 different medical imaging benchmark datasets
in 2D and 3D multi-class classification tasks.
Further, we correlate class entropy and prediction set size to assess task
uncertainty with conformal methods.
Related papers
- Enhancing Performance for Highly Imbalanced Medical Data via Data Regularization in a Federated Learning Setting [6.22153888560487]
The goal of the proposed method is to enhance model performance for cardiovascular disease prediction.
The method is evaluated across four datasets for cardiovascular disease prediction, which are scattered across different clients.
arXiv Detail & Related papers (2024-05-30T19:15:38Z) - EDUE: Expert Disagreement-Guided One-Pass Uncertainty Estimation for Medical Image Segmentation [1.757276115858037]
This paper proposes an Expert Disagreement-Guided Uncertainty Estimation (EDUE) for medical image segmentation.
By leveraging variability in ground-truth annotations from multiple raters, we guide the model during training and incorporate random sampling-based strategies to enhance calibration confidence.
arXiv Detail & Related papers (2024-03-25T10:13:52Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results.
Recent developments in distribution-free uncertainty quantification present practical solutions for these issues.
We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity.
arXiv Detail & Related papers (2022-07-05T18:01:20Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions
in Medical Domain [20.237847764018138]
We propose an evaluation framework for class probability estimates (CPEs) in the presence of label uncertainty.
We also formalize evaluation metrics for higher-order statistics, including inter-rater disagreement.
We show that our approach significantly enhances the reliability of uncertainty estimates.
arXiv Detail & Related papers (2020-07-03T12:54:08Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
This work advances the understanding of uncertainty estimation for classification and risk prediction on medical data.
In a data-scarce field such as healthcare, the ability to measure the uncertainty of a model's prediction could potentially lead to improved effectiveness of decision support tools.
arXiv Detail & Related papers (2020-04-13T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.