論文の概要: Structural Modeling for Dialogue Disentanglement
- arxiv url: http://arxiv.org/abs/2110.08018v1
- Date: Fri, 15 Oct 2021 11:28:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-18 13:25:16.899487
- Title: Structural Modeling for Dialogue Disentanglement
- Title(参考訳): 対話異方性の構造モデリング
- Authors: Xinbei Ma, Zhuosheng Zhang and Hai Zhao
- Abstract要約: マルチパーティ対話コンテキスト マルチパーティ対話コンテキストは、対話読解の課題に繋がる。
本研究は,対話構造の特徴を考慮に入れて,複数パーティ履歴をスレッドにアンタングルする新しいモデルを設計する。
- 参考スコア(独自算出の注目度): 43.352833140317486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tangled multi-party dialogue context leads to challenges for dialogue reading
comprehension, where multiple dialogue threads flow simultaneously within the
same dialogue history, thus increasing difficulties in understanding a dialogue
history for both human and machine. Dialogue disentanglement aims to clarify
conversation threads in a multi-party dialogue history, thus reducing the
difficulty of comprehending the long disordered dialogue passage. Existing
studies commonly focus on utterance encoding with carefully designed feature
engineering-based methods but pay inadequate attention to dialogue structure.
This work designs a novel model to disentangle multi-party history into
threads, by taking dialogue structure features into account. Specifically,
based on the fact that dialogues are constructed through successive
participation of speakers and interactions between users of interest, we
extract clues of speaker property and reference of users to model the structure
of a long dialogue record. The novel method is evaluated on the Ubuntu IRC
dataset and shows state-of-the-art experimental results in dialogue
disentanglement.
- Abstract(参考訳): 複数の対話スレッドが同一の対話履歴内で同時に流れるため、人間と機械の両方の対話履歴を理解するのが困難になる。
対話の絡み合いは、多人数対話履歴における会話スレッドを明確にすることを目的としており、長い混乱した対話パスの理解が困難になる。
既存の研究は、慎重に設計された特徴工学に基づく発話符号化に重点を置いているが、対話構造に不適切な注意を払っている。
本研究は,対話構造の特徴を考慮に入れて,複数パーティ履歴をスレッドにアンタングルする新しいモデルを設計する。
具体的には、話者の連続的な参加とユーザ間の相互作用によって対話が構築されるという事実に基づいて、長い対話記録の構造をモデル化するための話者特性の手がかりとユーザの参照を抽出する。
本手法はUbuntu IRCデータセット上で評価され,対話の絡み合いに関する最先端の実験結果を示す。
関連論文リスト
- A Static and Dynamic Attention Framework for Multi Turn Dialogue Generation [37.79563028123686]
オープンドメインマルチターン対話生成では,対話履歴の文脈意味論をモデル化することが不可欠である。
従来の研究は、オープンドメインマルチターン対話生成における階層的再帰エンコーダデコーダフレームワークの有効性を検証していた。
本稿では,対話履歴をモデル化し,オープンドメインのマルチターン対話応答を生成する静的かつ動的アテンションに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-28T06:05:34Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
本稿では,話題認識の観点から,マルチターン対話をモデル化することを提案する。
対話文のセグメント化アルゴリズムを用いて、対話文を教師なしの方法でトピック集中フラグメントに分割する。
また,トピックセグメントを処理要素として扱う新しいモデルとして,トピック認識デュアルアテンションマッチング(TADAM)ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T11:03:55Z) - STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension [42.57581945778631]
抽象的な対話要約は、自然言語処理における重要なスタンドアロンタスクとみなされてきた。
本稿では,新たな対話要約タスクであるSTRUctured DiaLoguE Summarizationを提案する。
変換器エンコーダ言語モデルの対話理解性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-24T04:39:54Z) - A Benchmark for Understanding and Generating Dialogue between Characters
in Stories [75.29466820496913]
本研究は,機械が物語の対話を理解・生成できるかどうかを探求する最初の研究である。
マスク付き対話生成と対話話者認識という2つの新しいタスクを提案する。
DialStoryの自動評価と手動評価で既存のモデルをテストすることで,提案課題の難しさを示す。
論文 参考訳(メタデータ) (2022-09-18T10:19:04Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
自然言語を理解し、人間と対話するための訓練機械は、人工知能の解明と本質的なタスクである。
本稿では,対話理解タスクにおける対話モデリングの技術的視点から,過去の手法を概観する。
さらに,対話シナリオにおけるPrLMの強化に使用される対話関連事前学習手法を分類する。
論文 参考訳(メタデータ) (2021-10-11T03:52:37Z) - DialogLM: Pre-trained Model for Long Dialogue Understanding and
Summarization [19.918194137007653]
本稿では,長い対話理解と要約のための事前学習フレームワークを提案する。
長い会話の性質を考慮し、生成前学習のためのウィンドウベースの認知的アプローチを提案する。
我々は,対話要約,抽象的質問応答,トピックセグメンテーションのタスクをカバーする,長文対話の5つのデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-09-06T13:55:03Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
対話モデリングの観点から,従来の手法を検討した。
対話理解タスクで広く使用されている対話モデリングの3つの典型的なパターンについて議論します。
論文 参考訳(メタデータ) (2021-03-04T15:50:17Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
本稿では, 対話状態の段階的追跡を, バックエンドデータの助けを借りて行うことを提案する。
実験の結果,MultiWOZ 2.1の連立信条精度は38.6%向上した。
論文 参考訳(メタデータ) (2020-05-27T02:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。