論文の概要: A Rate-Distortion Framework for Explaining Black-box Model Decisions
- arxiv url: http://arxiv.org/abs/2110.08252v1
- Date: Tue, 12 Oct 2021 12:17:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-24 12:47:15.602922
- Title: A Rate-Distortion Framework for Explaining Black-box Model Decisions
- Title(参考訳): ブラックボックスモデル決定記述のためのレート歪みフレームワーク
- Authors: Stefan Kolek, Duc Anh Nguyen, Ron Levie, Joan Bruna, Gitta Kutyniok
- Abstract要約: 我々は,ブラックボックスモデル決定を数学的に確立した手法であるRDE(Rate-Distortion Explanation)フレームワークを提案する。
このフレームワークは、ターゲットの入力信号の摂動に基づいており、ニューラルネットワークのような様々な訓練済みのモデルに適用できる。
- 参考スコア(独自算出の注目度): 28.143624457141797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the Rate-Distortion Explanation (RDE) framework, a mathematically
well-founded method for explaining black-box model decisions. The framework is
based on perturbations of the target input signal and applies to any
differentiable pre-trained model such as neural networks. Our experiments
demonstrate the framework's adaptability to diverse data modalities,
particularly images, audio, and physical simulations of urban environments.
- Abstract(参考訳): 我々は,ブラックボックスモデル決定を数学的に確立した手法であるRDE(Rate-Distortion Explanation)フレームワークを提案する。
このフレームワークは、ターゲットの入力信号の摂動に基づいており、ニューラルネットワークのような様々な訓練済みのモデルに適用できる。
本実験は,都市環境の様々なデータモダリティ,特に画像,音声,物理シミュレーションに対するフレームワークの適応性を示す。
関連論文リスト
- P-TAME: Explain Any Image Classifier with Trained Perturbations [14.31574090533474]
P-TAME (Perturbation-based Trainable Attention Mechanism for Explanations) は、ディープニューラルネットワーク(DNN)を説明するためのモデルに依存しない手法である。
推論中に単一のフォワードパスで高分解能な説明を生成する。
本稿では,VGG-16,ResNet-50,ViT-B-16の3つの画像分類器について,P-TAMEを用いて検討する。
論文 参考訳(メタデータ) (2025-01-29T18:06:08Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Interpreting and Controlling Vision Foundation Models via Text
Explanations [45.30541722925515]
本稿では,視覚変換器の潜在トークンを自然言語で解釈するフレームワークを提案する。
我々のアプローチは、追加のモデルトレーニングやデータ収集を必要とせずに、モデルの視覚的推論手順の理解を可能にする。
論文 参考訳(メタデータ) (2023-10-16T17:12:06Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - VIDM: Video Implicit Diffusion Models [75.90225524502759]
拡散モデルは、高品質で多様な画像の集合を合成するための強力な生成方法として登場した。
本研究では,移動の効果を暗黙の条件でモデル化する拡散モデルに基づく映像生成手法を提案する。
我々は,空間トランケーションのサンプリング,ロバストネスペナルティ,位置群正規化などの複数の戦略を提案することにより,生成されたビデオの品質を向上させる。
論文 参考訳(メタデータ) (2022-12-01T02:58:46Z) - Internal Representations of Vision Models Through the Lens of Frames on
Data Manifolds [8.67467876089153]
多様体の接束上のフレームの概念から着想を得た、そのような表現を研究するための新しいアプローチを提案する。
私たちの構成は、ニューラルネットワークフレームと呼ばれ、データポイントの特定の種類の摂動を表すベクトルの集合を組み立てることによって形成されます。
ニューラルフレームを用いて、データポイントの小さな近傍でモデル、層間、特定の変動モードの処理方法について観察する。
論文 参考訳(メタデータ) (2022-11-19T01:48:19Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - CARE: Coherent Actionable Recourse based on Sound Counterfactual
Explanations [0.0]
本稿では,モデルおよびユーザレベルのデシダータに対処するモジュール型説明フレームワークであるCAREを紹介する。
モデルに依存しないアプローチとして、CAREはブラックボックスモデルに対して複数の多様な説明を生成する。
論文 参考訳(メタデータ) (2021-08-18T15:26:59Z) - Gradient-based Bayesian Experimental Design for Implicit Models using
Mutual Information Lower Bounds [20.393359858407162]
ベイズ実験設計のためのフレームワーク(BED)を暗黙のモデルで導入する。データ生成分布は難解だが、そこからのサンプリングは可能である。
このようなモデルに最適な実験設計を見つけるために、ニューラルネットワークがパラメータとする相互情報の低い境界を最大化します。
ニューラルネットワークをサンプルデータ上でトレーニングすることで,勾配アセンシングを用いたネットワークパラメータと設計を同時に更新する。
論文 参考訳(メタデータ) (2021-05-10T13:59:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。