Models we Can Trust: Toward a Systematic Discipline of (Agent-Based)
Model Interpretation and Validation
- URL: http://arxiv.org/abs/2102.11615v1
- Date: Tue, 23 Feb 2021 10:52:22 GMT
- Title: Models we Can Trust: Toward a Systematic Discipline of (Agent-Based)
Model Interpretation and Validation
- Authors: Gabriel Istrate
- Abstract summary: We advocate the development of a discipline of interacting with and extracting information from models.
We outline some directions for the development of a such a discipline.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We advocate the development of a discipline of interacting with and
extracting information from models, both mathematical (e.g. game-theoretic
ones) and computational (e.g. agent-based models). We outline some directions
for the development of a such a discipline:
- the development of logical frameworks for the systematic formal
specification of stylized facts and social mechanisms in (mathematical and
computational) social science. Such frameworks would bring to attention new
issues, such as phase transitions, i.e. dramatical changes in the validity of
the stylized facts beyond some critical values in parameter space. We argue
that such statements are useful for those logical frameworks describing
properties of ABM.
- the adaptation of tools from the theory of reactive systems (such as
bisimulation) to obtain practically relevant notions of two systems "having the
same behavior".
- the systematic development of an adversarial theory of model perturbations,
that investigates the robustness of conclusions derived from models of social
behavior to variations in several features of the social dynamics. These may
include: activation order, the underlying social network, individual agent
behavior.
Related papers
- Graph Neural Ordinary Differential Equations for Coarse-Grained Socioeconomic Dynamics [0.0]
We present a data-driven machine-learning approach for modeling space-time socioeconomic dynamics.
Our findings, from a case study of Baltimore, MD, indicate that this machine learning-augmented coarse-grained model serves as a powerful instrument.
arXiv Detail & Related papers (2024-07-25T15:12:46Z) - Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks [50.29356570858905]
We introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation.
We provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated.
This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.
arXiv Detail & Related papers (2024-05-24T17:19:57Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Multi-Agent Verification and Control with Probabilistic Model Checking [4.56877715768796]
Probabilistic model checking is a technique for formal automated reasoning about software or hardware systems.
It builds upon ideas and techniques from a diverse range of fields, from logic, automata and graph theory, to optimisation, numerical methods and control.
In recent years, probabilistic model checking has also been extended to integrate ideas from game theory.
arXiv Detail & Related papers (2023-08-05T09:31:32Z) - Generative Models as a Complex Systems Science: How can we make sense of
large language model behavior? [75.79305790453654]
Coaxing out desired behavior from pretrained models, while avoiding undesirable ones, has redefined NLP.
We argue for a systematic effort to decompose language model behavior into categories that explain cross-task performance.
arXiv Detail & Related papers (2023-07-31T22:58:41Z) - AI-Assisted Discovery of Quantitative and Formal Models in Social
Science [6.39651637213537]
We show that our system can be used to discover interpretable models from real-world data in economics and sociology.
We propose that this AI-assisted framework can bridge parametric and non-parametric models commonly employed in social science research.
arXiv Detail & Related papers (2022-10-02T16:25:47Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
We review the state-of-the-art theory and implementations of active inference for state-estimation, control, planning and learning.
We showcase relevant experiments that illustrate its potential in terms of adaptation, generalization and robustness.
arXiv Detail & Related papers (2021-12-03T12:10:26Z) - Modelling Behaviour Change using Cognitive Agent Simulations [0.0]
This paper presents work-in-progress research to apply selected behaviour change theories to simulated agents.
The research is focusing on complex agent architectures required for self-determined goal achievement in adverse circumstances.
arXiv Detail & Related papers (2021-10-16T19:19:08Z) - COSMO: Conditional SEQ2SEQ-based Mixture Model for Zero-Shot Commonsense
Question Answering [50.65816570279115]
Identification of the implicit causes and effects of a social context is the driving capability which can enable machines to perform commonsense reasoning.
Current approaches in this realm lack the ability to perform commonsense reasoning upon facing an unseen situation.
We present Conditional SEQ2SEQ-based Mixture model (COSMO), which provides us with the capabilities of dynamic and diverse content generation.
arXiv Detail & Related papers (2020-11-02T07:08:19Z) - Learning Opinion Dynamics From Social Traces [25.161493874783584]
We propose an inference mechanism for fitting a generative, agent-like model of opinion dynamics to real-world social traces.
We showcase our proposal by translating a classical agent-based model of opinion dynamics into its generative counterpart.
We apply our model to real-world data from Reddit to explore the long-standing question about the impact of backfire effect.
arXiv Detail & Related papers (2020-06-02T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.