論文の概要: Gravitational wave surrogates through automated machine learning
- arxiv url: http://arxiv.org/abs/2110.08901v1
- Date: Sun, 17 Oct 2021 19:24:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-19 20:58:21.939890
- Title: Gravitational wave surrogates through automated machine learning
- Title(参考訳): 自動機械学習による重力波の伝播
- Authors: Dami\'an Barsotti, Franco Cerino, Manuel Tiglio, Aar\'on Villanueva
- Abstract要約: 自動機械学習(AutoML)に基づくコンパクトバイナリからの重力波形予測の展望を解析する。
核としてのラジアル基底を持つガウス過程の回帰のようなアプローチは、十分正確な解を提供する。
本研究は,還元基底と経験補間法に基づく数値相対性理論のサロゲートの文脈内にある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze a prospect for predicting gravitational waveforms from compact
binaries based on automated machine learning (AutoML) from around a hundred
different possible regression models, without having to resort to tedious and
manual case-by-case analyses and fine-tuning. The particular study of this
article is within the context of the gravitational waves emitted by the
collision of two spinless black holes in initial quasi-circular orbit. We find,
for example, that approaches such as Gaussian process regression with radial
bases as kernels do provide a sufficiently accurate solution, an approach which
is generalizable to multiple dimensions with low computational evaluation cost.
The results here presented suggest that AutoML might provide a framework for
regression in the field of surrogates for gravitational waveforms. Our study is
within the context of surrogates of numerical relativity simulations based on
Reduced Basis and the Empirical Interpolation Method, where we find that for
the particular case analyzed AutoML can produce surrogates which are
essentially indistinguishable from the NR simulations themselves.
- Abstract(参考訳): 我々は,100の可能な回帰モデルから自動機械学習(AutoML)に基づくコンパクトバイナリからの重力波形の予測を,面倒で手動のケースバイケース分析や微調整に頼ることなく,解析する。
この論文の特別な研究は、初期準円軌道における2つのスピンレスブラックホールの衝突によって生じる重力波の文脈内にある。
例えば、核としてのラジアル基底によるガウス過程の回帰のようなアプローチは、計算評価コストの低い複数の次元に一般化可能な十分正確な解を提供する。
以上の結果から,AutoMLは重力波形のサロゲート領域における回帰の枠組みを提供する可能性が示唆された。
本研究では, 減少基底と経験的補間法に基づく数値相対論シミュレーションのサロゲートの文脈内にあり, 解析されたautomlは, nrシミュレーション自体と本質的に区別できないサロゲートを生成することができることがわかった。
関連論文リスト
- Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Posterior Coreset Construction with Kernelized Stein Discrepancy for
Model-Based Reinforcement Learning [78.30395044401321]
我々は、強化学習(MBRL)のための新しいモデルベースアプローチを開発する。
ターゲット遷移モデルの仮定を緩和し、混合モデルの一般的な族に属する。
連続的な制御環境では、壁時計の時間を最大50%削減することができる。
論文 参考訳(メタデータ) (2022-06-02T17:27:49Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Simulation-Assisted Decorrelation for Resonant Anomaly Detection [1.5675763601034223]
異常検出に対する弱い、教師なしの機械学習アプローチが増えている。
例の1つは共鳴新しい物理学の探索であり、そこではバンプハントを不変質量スペクトルで行うことができる。
学習に最小限の原型シミュレーションを組み込むことにより,この問題に対する2つの解決策を探求する。
論文 参考訳(メタデータ) (2020-09-04T14:02:15Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
本研究では,実世界のランダム性を捉え,誤差を計測できる微視的交通モデルを提案する。
提案フレームワークの特長の一つは,自動車追従行動と車線変更行動の両方を1つのモデルで捉える能力である。
論文 参考訳(メタデータ) (2020-07-17T06:03:32Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations [5.827236278192557]
本研究では,物理正規化ガウス過程(PRGP)という新しいモデリングフレームワークを提案する。
この新しいアプローチは、物理モデル、すなわち古典的なトラフィックフローモデルをガウスのプロセスアーキテクチャにエンコードし、機械学習のトレーニングプロセスを規則化する。
提案手法の有効性を証明するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-07-14T17:27:23Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
本研究では,古典的トラフィックフローモデルを機械学習アーキテクチャにエンコードする,物理正規化機械学習(PRML)という新しいモデリングフレームワークを提案する。
提案手法の有効性を実証するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-02-06T17:22:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。