論文の概要: Extensive Deep Temporal Point Process
- arxiv url: http://arxiv.org/abs/2110.09823v1
- Date: Tue, 19 Oct 2021 10:15:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-20 20:51:28.079725
- Title: Extensive Deep Temporal Point Process
- Title(参考訳): 広範囲な深部時間点過程
- Authors: Haitao Lin, Cheng Tan, Lirong Wu, Zhangyang Gao, and Stan. Z. Li
- Abstract要約: 本稿では,非同期イベントシーケンスを時間的プロセスでモデル化することの課題と最近の研究を概観する。
本稿では,多種類のイベント間の関係を生かしたGranger因果発見フレームワークを提案する。
- 参考スコア(独自算出の注目度): 23.9359814366167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal point process as the stochastic process on continuous domain of time
is usually used to model the asynchronous event sequence featuring with
occurence timestamps. With the rise of deep learning, due to the strong
expressivity of deep neural networks, they are emerging as a promising choice
for capturing the patterns in asynchronous sequences, in the setting of
temporal point process. In this paper, we first review recent research emphasis
and difficulties in modeling asynchronous event sequences with deep temporal
point process, which can be concluded into four fields: encoding of history
sequence, formulation of conditional intensity function, relational discovery
of events and learning approaches for optimization. We introduce most of
recently proposed models by dismantling them as the four parts, and conduct
experiments by remodularizing the first three parts with the same learning
strategy for a fair empirical evaluation. Besides, we extend the history
encoders and conditional intensity function family, and propose a Granger
causality discovery framework for exploiting the relations among multi-types of
events. Discrete graph structure learning in the framework of Variational
Inference is employed to reveal latent structures of Granger causality graph,
and further experiments shows the proposed framework with learned latent graph
can both capture the relations and achieve an improved fitting and predicting
performance.
- Abstract(参考訳): 連続的な時間領域上の確率的プロセスとしての時間的ポイントプロセスは、通常、発生時のタイムスタンプを特徴とする非同期イベントシーケンスをモデル化するために使用される。
ディープラーニングの台頭に伴い、深層ニューラルネットワークの強い表現力により、時間的ポイントプロセスの設定において、非同期シーケンスのパターンをキャプチャする上で、有望な選択肢として現れている。
本稿では,非同期イベントシーケンスを深部時間点プロセスでモデル化することの課題と課題を,履歴シーケンスの符号化,条件強度関数の定式化,イベントのリレーショナル発見,最適化のための学習アプローチの4つの分野にまとめる。
本稿では,最近提案されたモデルのほとんどを4部に分けて紹介し,最初の3部を同一の学習戦略で修正し,公平な実験評価を行う。
また、履歴エンコーダと条件強度関数ファミリを拡張し、イベントの多種間の関係を利用するためのグランジャー因果関係発見フレームワークを提案する。
変分推論の枠組みにおける離散グラフ構造学習を用いて,グランガー因果グラフの潜時構造を明らかにする。さらに,学習された潜時グラフを用いて提案したフレームワークは,関係を捕捉し,適合性の向上と予測性能の向上を図っている。
関連論文リスト
- Decoupled Marked Temporal Point Process using Neural Ordinary Differential Equations [14.828081841581296]
MTPP(マークド・テンポラル・ポイント・プロセス)は、イベント・タイム・データの集合である。
近年の研究では、ディープニューラルネットワークを使用してイベントの複雑な時間的依存関係をキャプチャしている。
本稿では,プロセスの特性を異なる事象からの進化的影響の集合に分解する脱結合型MTPPフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-10T10:15:32Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
時間点プロセス(TPP)は、そのようなモデリングの標準的な方法である。
既存のTPPモデルは、イベントの相互作用を明示的にモデル化する代わりに、将来のイベントの条件分布に焦点を当てており、イベント予測の課題を示唆している。
本稿では,ニューラル推論(NRI)を利用して,観測データから動的パターンを同時に学習しながら,相互作用を推論するグラフを学習する手法を提案する。
論文 参考訳(メタデータ) (2023-09-06T09:47:03Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
本稿では,歴史的コントラスト学習の新しい学習枠組みに基づくイベント予測モデルを提案する。
CENETは、最も潜在的なエンティティを識別するために、歴史的および非歴史的依存関係の両方を学ぶ。
提案したモデルを5つのベンチマークグラフで評価する。
論文 参考訳(メタデータ) (2023-08-29T03:26:38Z) - Deep graph kernel point processes [17.74234892097879]
本稿では,グラフ上の離散的なイベントデータに対する新たなポイントプロセスモデルを提案する。
キーとなるアイデアは、グラフニューラルネットワーク(GNN)による影響カーネルを表現して、基盤となるグラフ構造をキャプチャすることだ。
ニューラルネットワークを用いた条件強度関数を直接モデル化することに焦点を当てた以前の研究と比較して、カーネルのプレゼンテーションでは、繰り返し発生する事象の影響パターンをより効果的に表現している。
論文 参考訳(メタデータ) (2023-06-20T06:15:19Z) - Intensity Profile Projection: A Framework for Continuous-Time
Representation Learning for Dynamic Networks [50.2033914945157]
本稿では、連続時間動的ネットワークデータのための表現学習フレームワークIntensity Profile Projectionを提案する。
このフレームワークは3つの段階から構成される: 対の強度関数を推定し、強度再構成誤差の概念を最小化する射影を学習する。
さらに、推定軌跡の誤差を厳密に制御する推定理論を開発し、その表現がノイズに敏感な追従解析に利用できることを示す。
論文 参考訳(メタデータ) (2023-06-09T15:38:25Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Deep Recurrent Modelling of Granger Causality with Latent Confounding [0.0]
本稿では,非線形なGranger因果関係をモデル化するためのディープラーニングに基づくアプローチを提案する。
我々は,非線形時系列におけるモデル性能を実演し,その要因と効果を異なる時間ラグで示す。
論文 参考訳(メタデータ) (2022-02-23T03:26:22Z) - Extracting Temporal Event Relation with Syntactic-Guided Temporal Graph
Transformer [17.850316385809617]
1文または2文の連続文から構築した構文グラフから2つのイベント間の接続を明示的に見つけるための新しい時相グラフトランスフォーマーネットワークを提案する。
MATRES と TB-Dense データセットを用いた実験により,本手法は時間的関係抽出と時間的関係分類の両方において,従来の最先端手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-04-19T19:00:45Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。