論文の概要: An Empirical Study: Extensive Deep Temporal Point Process
- arxiv url: http://arxiv.org/abs/2110.09823v2
- Date: Thu, 21 Oct 2021 14:09:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-22 13:01:03.458938
- Title: An Empirical Study: Extensive Deep Temporal Point Process
- Title(参考訳): 経験的考察:広汎な時間的プロセス
- Authors: Haitao Lin, Cheng Tan, Lirong Wu, Zhangyang Gao, and Stan. Z. Li
- Abstract要約: 本稿では,非同期イベントシーケンスを時間差の深いポイントプロセスでモデル化することの課題と最近の研究を概観する。
本稿では,多種類のイベント間の関係を生かしたGranger因果発見フレームワークを提案する。
- 参考スコア(独自算出の注目度): 23.9359814366167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal point process as the stochastic process on continuous domain of time
is commonly used to model the asyn-chronous event sequence featuring with
occurence timestamps. Because the strong expressivity of deep neural networks,
they areemerging as a promising choice for capturing the patterns in
asynchronous sequences, in the context of temporal point process. In thispaper,
we first review recent research emphasis and difficulties in modeling
asynchronous event sequences with deep temporal pointprocess, which can be
concluded into four fields: encoding of history sequence, formulation of
conditional intensity function, relationaldiscovery of events and learning
approaches for optimization. We introduce most of recently proposed models by
dismantling theminto the four parts, and conduct experiments by remodularizing
the first three parts with the same learning strategy for a fair
empiricalevaluation. Besides, we extend the history encoders and conditional
intensity function family, and propose a Granger causality discoveryframework
for exploiting the relations among multi-types of events. Because the Granger
causality can be represented by the Grangercausality graph, discrete graph
structure learning in the framework of Variational Inference is employed to
reveal latent structures of thegraph, and further experiments shows that the
proposed framework with learned latent graph can both capture the relations and
achievean improved fitting and predicting performance.
- Abstract(参考訳): 連続時間領域上の確率過程としての時間点過程は、時間スタンプを特徴とする時相イベントシーケンスをモデル化するために一般的に用いられる。
ディープニューラルネットワークの強い表現性は、時間的点過程の文脈において、非同期シーケンスのパターンをキャプチャするための有望な選択肢として融合する。
本稿では,近年の非同期イベントシーケンスを時間的ポイントプロセスでモデル化することの課題と課題を,履歴シーケンスの符号化,条件強度関数の定式化,イベントのリレーショナル発見,最適化のための学習アプローチの4つの分野にまとめる。
本稿では,最近提案されたモデルのほとんどを4部に分けて紹介し,最初の3部を同一の学習戦略で修正し,公平な実験評価を行う。
さらに,ヒストリーエンコーダと条件強度関数ファミリを拡張し,多種類のイベント間の関係を利用するためのグラガー因果発見フレームワークを提案する。
グランジャー因果関係をグランジャーカウシリティグラフで表すことができるため、変分推論の枠組みにおける離散グラフ構造学習は、グラフの潜在構造を明らかにするために用いられ、さらにさらなる実験により、学習された潜在グラフを持つフレームワークが関係をキャプチャし、適合性とパフォーマンスを予測できることが示されている。
関連論文リスト
- Decoupled Marked Temporal Point Process using Neural Ordinary Differential Equations [14.828081841581296]
MTPP(マークド・テンポラル・ポイント・プロセス)は、イベント・タイム・データの集合である。
近年の研究では、ディープニューラルネットワークを使用してイベントの複雑な時間的依存関係をキャプチャしている。
本稿では,プロセスの特性を異なる事象からの進化的影響の集合に分解する脱結合型MTPPフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-10T10:15:32Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
時間点プロセス(TPP)は、そのようなモデリングの標準的な方法である。
既存のTPPモデルは、イベントの相互作用を明示的にモデル化する代わりに、将来のイベントの条件分布に焦点を当てており、イベント予測の課題を示唆している。
本稿では,ニューラル推論(NRI)を利用して,観測データから動的パターンを同時に学習しながら,相互作用を推論するグラフを学習する手法を提案する。
論文 参考訳(メタデータ) (2023-09-06T09:47:03Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
本稿では,歴史的コントラスト学習の新しい学習枠組みに基づくイベント予測モデルを提案する。
CENETは、最も潜在的なエンティティを識別するために、歴史的および非歴史的依存関係の両方を学ぶ。
提案したモデルを5つのベンチマークグラフで評価する。
論文 参考訳(メタデータ) (2023-08-29T03:26:38Z) - Deep graph kernel point processes [17.74234892097879]
本稿では,グラフ上の離散的なイベントデータに対する新たなポイントプロセスモデルを提案する。
キーとなるアイデアは、グラフニューラルネットワーク(GNN)による影響カーネルを表現して、基盤となるグラフ構造をキャプチャすることだ。
ニューラルネットワークを用いた条件強度関数を直接モデル化することに焦点を当てた以前の研究と比較して、カーネルのプレゼンテーションでは、繰り返し発生する事象の影響パターンをより効果的に表現している。
論文 参考訳(メタデータ) (2023-06-20T06:15:19Z) - Intensity Profile Projection: A Framework for Continuous-Time
Representation Learning for Dynamic Networks [50.2033914945157]
本稿では、連続時間動的ネットワークデータのための表現学習フレームワークIntensity Profile Projectionを提案する。
このフレームワークは3つの段階から構成される: 対の強度関数を推定し、強度再構成誤差の概念を最小化する射影を学習する。
さらに、推定軌跡の誤差を厳密に制御する推定理論を開発し、その表現がノイズに敏感な追従解析に利用できることを示す。
論文 参考訳(メタデータ) (2023-06-09T15:38:25Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Deep Recurrent Modelling of Granger Causality with Latent Confounding [0.0]
本稿では,非線形なGranger因果関係をモデル化するためのディープラーニングに基づくアプローチを提案する。
我々は,非線形時系列におけるモデル性能を実演し,その要因と効果を異なる時間ラグで示す。
論文 参考訳(メタデータ) (2022-02-23T03:26:22Z) - Extracting Temporal Event Relation with Syntactic-Guided Temporal Graph
Transformer [17.850316385809617]
1文または2文の連続文から構築した構文グラフから2つのイベント間の接続を明示的に見つけるための新しい時相グラフトランスフォーマーネットワークを提案する。
MATRES と TB-Dense データセットを用いた実験により,本手法は時間的関係抽出と時間的関係分類の両方において,従来の最先端手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-04-19T19:00:45Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。