論文の概要: Understanding Convolutional Neural Networks from Theoretical Perspective
via Volterra Convolution
- arxiv url: http://arxiv.org/abs/2110.09902v1
- Date: Tue, 19 Oct 2021 12:07:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-20 19:06:25.206924
- Title: Understanding Convolutional Neural Networks from Theoretical Perspective
via Volterra Convolution
- Title(参考訳): ボルテラ畳み込みによる理論的観点からの畳み込みニューラルネットワークの理解
- Authors: Tenghui Li and Guoxu Zhou and Yuning Qiu and Qibin Zhao
- Abstract要約: 本研究では,畳み込みニューラルネットワークと有限Volterra畳み込みの関係について検討する。
複雑なネットワークアーキテクチャに邪魔されることなく、ニューラルネットワークの全体的な特性を説明し、研究するための新しいアプローチを提供する。
- 参考スコア(独自算出の注目度): 22.058311878382142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a general and unified perspective of convolutional neural
networks by exploring the relationship between (deep) convolutional neural
networks and finite Volterra convolutions. It provides a novel approach to
explain and study the overall characteristics of neural networks without being
disturbed by the complex network architectures. Concretely, we examine the
basic structures of finite term Volterra convolutions and convolutional neural
networks. Our results show that convolutional neural network is an
approximation of the finite term Volterra convolution, whose order increases
exponentially with the number of layers and kernel size increases exponentially
with the strides. With this perspective, the specialized perturbations are
directly obtained from the approximated kernels rather than iterative generated
adversarial examples. Extensive experiments on synthetic and real-world data
sets show the correctness and effectiveness of our results.
- Abstract(参考訳): 本研究では,(深い)畳み込みニューラルネットワークと有限ボルテラ畳み込みの関係を明らかにすることにより,畳み込みニューラルネットワークの汎用的かつ統一的な展望を提案する。
複雑なネットワークアーキテクチャに邪魔されることなく、ニューラルネットワークの全体的な特性を説明し、研究するための新しいアプローチを提供する。
具体的には,有限項Volterra畳み込みと畳み込みニューラルネットワークの基本構造について検討する。
その結果、畳み込みニューラルネットワークは有限項ボルテラ畳み込みの近似であり、その順序は層数で指数関数的に増加し、カーネルサイズはストライド数で指数関数的に増加する。
この観点からは、特殊摂動は反復生成逆例ではなく近似された核から直接得られる。
合成および実世界のデータセットに対する大規模な実験は、結果の正しさと有効性を示している。
関連論文リスト
- Collective variables of neural networks: empirical time evolution and scaling laws [0.535514140374842]
実験的なニューラル・タンジェント・カーネルのスペクトル、特にエントロピーとトレースのスペクトルに対する特定の測定により、ニューラルネットワークが学習した表現についての洞察が得られることを示す。
結果は、トランスフォーマー、オートエンコーダ、グラフニューラルネットワーク、強化学習研究など、より複雑なネットワークで示される前に、まずテストケースで実証される。
論文 参考訳(メタデータ) (2024-10-09T21:37:14Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Graph Convolutional Networks from the Perspective of Sheaves and the
Neural Tangent Kernel [0.0]
グラフ畳み込みネットワークはディープニューラルネットワークアルゴリズムの一般的なクラスである。
その成功にもかかわらず、グラフ畳み込みネットワークには、過度に滑らかな関数やホモ親近性関数の学習へのバイアスなど、多くの特異な特徴がある。
せん断畳み込みネットワークのニューラル・タンジェント・カーネルの研究により,このギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2022-08-19T12:46:49Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
深部畳み込みニューラルネットワークにおける平均2乗誤差解析について考察する。
付加的なリッジ関数に対しては、畳み込みニューラルネットワークとReLUアクティベーション関数を併用した1つの完全連結層が最適極小値に到達できることが示される。
論文 参考訳(メタデータ) (2022-02-24T14:22:32Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
本稿では,ディープラーニングの最適化を一般化誤差と関連づけて解析する理論フレームワークを提案する。
ニューラルネットワーク最適化分析のための平均場理論やニューラル・タンジェント・カーネル理論のような既存のフレームワークは、そのグローバル収束を示すために、ネットワークの無限幅の限界を取る必要がある。
論文 参考訳(メタデータ) (2020-07-11T18:19:50Z) - Expressivity of Deep Neural Networks [2.7909470193274593]
本稿では,ニューラルネットワークの様々な近似結果について概説する。
既存の結果は、一般的なフィードフォワードアーキテクチャのためのものだが、畳み込み、残留、反復するニューラルネットワークの近似結果も記述する。
論文 参考訳(メタデータ) (2020-07-09T13:08:01Z) - Topological Insights into Sparse Neural Networks [16.515620374178535]
本稿では,グラフ理論の観点から,スパースニューラルネットワークトポロジの理解と比較を行うアプローチを提案する。
まず、異なるスパースニューラルネットワーク間の距離を測定するために、NNSTD(Neural Network Sparse Topology Distance)を提案する。
適応的なスパース接続は、高密度モデルよりも優れた非常に異なるトポロジを持つスパースサブネットワークを常に顕在化することができることを示す。
論文 参考訳(メタデータ) (2020-06-24T22:27:21Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。