論文の概要: Expressivity of Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2007.04759v1
- Date: Thu, 9 Jul 2020 13:08:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 04:09:02.553445
- Title: Expressivity of Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークの表現性
- Authors: Ingo G\"uhring, Mones Raslan, Gitta Kutyniok
- Abstract要約: 本稿では,ニューラルネットワークの様々な近似結果について概説する。
既存の結果は、一般的なフィードフォワードアーキテクチャのためのものだが、畳み込み、残留、反復するニューラルネットワークの近似結果も記述する。
- 参考スコア(独自算出の注目度): 2.7909470193274593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this review paper, we give a comprehensive overview of the large variety
of approximation results for neural networks. Approximation rates for classical
function spaces as well as benefits of deep neural networks over shallow ones
for specifically structured function classes are discussed. While the mainbody
of existing results is for general feedforward architectures, we also depict
approximation results for convolutional, residual and recurrent neural
networks.
- Abstract(参考訳): 本稿では,ニューラルネットワークの多種多様な近似結果について概観する。
古典関数空間に対する近似率と、特に構造化関数クラスに対する浅層関数に対するディープニューラルネットワークの利点について論じた。
既存の結果は、一般的なフィードフォワードアーキテクチャのためのものだが、畳み込み、残留、反復するニューラルネットワークの近似結果も記述する。
関連論文リスト
- On the growth of the parameters of approximating ReLU neural networks [0.542249320079018]
この研究は、与えられた滑らかな関数を近似する完全連結フィードフォワードReLUニューラルネットワークの解析に焦点を当てる。
アーキテクチャの増大にともなう,従来の普遍近似特性とは対照的に,近似ネットワークのパラメータの増大が懸念される。
論文 参考訳(メタデータ) (2024-06-21T07:45:28Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
ニューラルネットワークのランクは、層をまたがる情報を測定する。
これは機械学習の幅広い領域にまたがる重要な構造条件の例である。
しかし、ニューラルネットワークでは、低ランク構造を生み出す固有のメカニズムはあいまいで不明瞭である。
論文 参考訳(メタデータ) (2022-06-13T12:03:32Z) - Fourier Neural Networks for Function Approximation [2.840363325289377]
ニューラルネットワークが普遍近似器であることは広く証明されている。
特に、狭いニューラルネットワークが、ディープニューラルネットワークによって実装されている関数を近似するために、ネットワークは指数関数的に多数のニューロンを取ることが証明されている。
論文 参考訳(メタデータ) (2021-10-21T09:30:26Z) - Theoretical Analysis of the Advantage of Deepening Neural Networks [0.0]
ディープニューラルネットワークによって計算可能な関数の表現性を知ることが重要である。
この2つの基準により,深層ニューラルネットワークの表現性を向上させる上で,各層におけるユニットの増加よりも,レイヤの増加の方が効果的であることを示す。
論文 参考訳(メタデータ) (2020-09-24T04:10:50Z) - The efficiency of deep learning algorithms for detecting anatomical
reference points on radiological images of the head profile [55.41644538483948]
U-Netニューラルネットワークは、完全な畳み込みニューラルネットワークよりも正確に解剖学的基準点の検出を可能にする。
U-Net ニューラルネットワークによる解剖学的基準点検出の結果は,歯科矯正医のグループによる基準点検出の平均値に近づいた。
論文 参考訳(メタデータ) (2020-05-25T13:51:03Z) - Deep Randomized Neural Networks [12.333836441649343]
ランダム化されたニューラルネットワークは、ほとんどの接続が固定されたニューラルネットワークの挙動を探索する。
本章はランダム化ニューラルネットワークの設計と解析に関する主要な側面をすべて調査する。
論文 参考訳(メタデータ) (2020-02-27T17:57:58Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z) - Approximation smooth and sparse functions by deep neural networks
without saturation [0.6396288020763143]
本稿では,スムーズかつスパースな関数を近似するために,3つの層を隠蔽したディープニューラルネットワークを構築することを目的とする。
構成したディープネットは, 滑らかかつスパースな関数を制御可能な自由パラメータで近似することで, 最適近似率に達することを証明した。
論文 参考訳(メタデータ) (2020-01-13T09:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。