Missing Puzzle Pieces in the Performance Landscape of the Quantum Approximate Optimization Algorithm
- URL: http://arxiv.org/abs/2406.14618v1
- Date: Thu, 20 Jun 2024 18:00:02 GMT
- Title: Missing Puzzle Pieces in the Performance Landscape of the Quantum Approximate Optimization Algorithm
- Authors: Elisabeth Wybo, Martin Leib,
- Abstract summary: We consider the maximum cut and maximum independent set problems on random regular graphs.
We calculate the energy densities achieved by QAOA for high regularities up to $d=100$.
We combine the QAOA analysis with state-of-the-art upper bounds on optimality for both problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the maximum cut and maximum independent set problems on random regular graphs, and calculate the energy densities achieved by QAOA for high regularities up to $d=100$. Such an analysis is possible because the reverse causal cones of the operators in the Hamiltonian are associated with tree subgraphs, for which efficient classical contraction schemes can be developed. We combine the QAOA analysis with state-of-the-art upper bounds on optimality for both problems. This yields novel and better bounds on the approximation ratios achieved by QAOA for large problem sizes. We show that the approximation ratios achieved by QAOA improve as the graph regularity increases for the maximum cut problem. However, QAOA exhibits the opposite behavior for the maximum independent set problem, i.e. the approximation ratios decrease with increasing regularity. This phenomenon is explainable by the overlap gap property for large $d$, which restricts local algorithms (like QAOA) from reaching near-optimal solutions with high probability. In addition, we use the QAOA parameters determined on the tree subgraphs for small graph instances, and in that way outperform classical algorithms like Goemans-Williamson for the maximum cut problem and minimal greedy for the maximum independent set problem. In this way we circumvent the parameter optimization problem and are able to derive bounds on the expected approximation ratios.
Related papers
- Improved Recursive QAOA for Solving MAX-CUT on Bipartite Graphs [4.364124102844566]
We analytically prove the performance limitations of level-1 QAOA in solving the MAX-CUT problem on bipartite graphs.
We show through numerical results that solving the same problem using level-1 Recursive QAOA (RQAOA)
We propose a modified RQAOA that reduces the parameter regime optimized in the QAOA.
arXiv Detail & Related papers (2024-08-23T16:35:47Z) - An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - An Expressive Ansatz for Low-Depth Quantum Approximate Optimisation [0.23999111269325263]
The quantum approximate optimisation algorithm (QAOA) is a hybrid quantum-classical algorithm used to approximately solve optimisation problems.
While QAOA can be implemented on NISQ devices, physical limitations can limit circuit depth and decrease performance.
This work introduces the eXpressive QAOA (XQAOA) that assigns more classical parameters to the ansatz to improve its performance at low depths.
arXiv Detail & Related papers (2023-02-09T07:47:06Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Predicting parameters for the Quantum Approximate Optimization Algorithm
for MAX-CUT from the infinite-size limit [0.05076419064097732]
We present an explicit algorithm to evaluate the performance of QAOA on MAX-CUT applied to random Erdos-Renyi graphs of expected degree $d$.
This analysis yields an explicit mapping between QAOA parameters for MAX-CUT on Erdos-Renyi graphs, and the Sherrington-Kirkpatrick model.
arXiv Detail & Related papers (2021-10-20T17:58:53Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - Empirical performance bounds for quantum approximate optimization [0.27998963147546135]
Quantifying performance bounds provides insight into when QAOA may be viable for solving real-world applications.
We find QAOA exceeds the Goemans-Williamson approximation ratio bound for most graphs.
The resulting data set is presented as a benchmark for establishing empirical bounds on QAOA performance.
arXiv Detail & Related papers (2021-02-12T23:12:09Z) - Hybrid quantum-classical algorithms for approximate graph coloring [65.62256987706128]
We show how to apply the quantum approximate optimization algorithm (RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex coloring of a graph.
We construct an efficient classical simulation algorithm which simulates level-$1$ QAOA and level-$1$ RQAOA for arbitrary graphs.
arXiv Detail & Related papers (2020-11-26T18:22:21Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - The Quantum Approximate Optimization Algorithm Needs to See the Whole
Graph: Worst Case Examples [6.810856082577402]
The Quantum Approximate Optimization Algorithm can be applied to search problems on graphs with a cost function that is a sum of terms corresponding to the edges.
We show that the QAOA with $(d-1)2p nA$ for any $A1$, can only achieve an approximation ratio of 1/2 for Max-Cut on bipartite random d-regular graphs for d large.
arXiv Detail & Related papers (2020-05-18T14:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.