論文の概要: DiffSRL: Learning Dynamic-aware State Representation for Deformable
Object Control with Differentiable Simulator
- arxiv url: http://arxiv.org/abs/2110.12352v1
- Date: Sun, 24 Oct 2021 04:53:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-31 16:06:03.977038
- Title: DiffSRL: Learning Dynamic-aware State Representation for Deformable
Object Control with Differentiable Simulator
- Title(参考訳): DiffSRL:微分シミュレータを用いた変形性物体制御のための動的認識状態表現学習
- Authors: Sirui Chen, Yunhao Liu, Jialong Li, Shang Wen Yao, Tingxiang Fan, Jia
Pan
- Abstract要約: ダイナミックス関連情報をキャプチャできる潜在空間は、モデルフリー強化学習の加速のような分野に広く応用されている。
微分可能シミュレーションを利用した動的状態表現学習パイプラインDiffSRLを提案する。
本モデルでは,長期的ダイナミクスと報奨予測の両面で優れた性能を示す。
- 参考スコア(独自算出の注目度): 26.280021036447213
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Dynamic state representation learning is an important task in robot learning.
Latent space that can capture dynamics related information has wide application
in areas such as accelerating model free reinforcement learning, closing the
simulation to reality gap, as well as reducing the motion planning complexity.
However, current dynamic state representation learning methods scale poorly on
complex dynamic systems such as deformable objects, and cannot directly embed
well defined simulation function into the training pipeline. We propose
DiffSRL, a dynamic state representation learning pipeline utilizing
differentiable simulation that can embed complex dynamics models as part of the
end-to-end training. We also integrate differentiable dynamic constraints as
part of the pipeline which provide incentives for the latent state to be aware
of dynamical constraints. We further establish a state representation learning
benchmark on a soft-body simulation system, PlasticineLab, and our model
demonstrates superior performance in terms of capturing long-term dynamics as
well as reward prediction.
- Abstract(参考訳): 動的状態表現学習はロボット学習において重要な課題である。
ダイナミックス関連情報をキャプチャできる潜在空間は、モデルフリー強化学習の加速、シミュレーションを現実のギャップに閉じる、動き計画の複雑さを減らすといった分野に広く応用されている。
しかし、現在の動的状態表現学習法は変形可能なオブジェクトのような複雑な動的システムではスケールが悪く、訓練パイプラインによく定義されたシミュレーション関数を直接組み込むことができない。
本稿では,エンド・ツー・エンドのトレーニングの一部として複雑なダイナミクスモデルを埋め込むことができる微分可能シミュレーションを用いた動的状態表現学習パイプラインdiffsrlを提案する。
また、パイプラインの一部として微分可能な動的制約を統合することで、潜在状態が動的制約を認識するインセンティブを提供します。
さらに, ソフトボディシミュレーションシステム plasticinelab における状態表現学習ベンチマークを確立し, 長期ダイナミクスの獲得と報酬予測の面で優れた性能を示す。
関連論文リスト
- SOLD: Reinforcement Learning with Slot Object-Centric Latent Dynamics [16.020835290802548]
Slot-Attention for Object-centric Latent Dynamicsは、画素入力からオブジェクト中心の動的モデルを学ぶ新しいアルゴリズムである。
構造化潜在空間は、モデル解釈可能性を改善するだけでなく、振る舞いモデルが推論する価値のある入力空間も提供することを実証する。
以上の結果から,SOLDは,最先端のモデルベースRLアルゴリズムであるDreamerV3よりも,さまざまなベンチマークロボット環境において優れていた。
論文 参考訳(メタデータ) (2024-10-11T14:03:31Z) - Deep Learning for Koopman-based Dynamic Movement Primitives [0.0]
実証から学ぶために,クープマン演算子と動的運動プリミティブの理論を結合して新しいアプローチを提案する。
我々のアプローチは glsadmd と呼ばれ、非線形力学系を線形潜在空間に射影し、解が所望の複素運動を再現する。
我々の結果は、LASAハンドライトデータセット上の拡張動的モード分解に匹敵するが、わずかな文字のトレーニングしか行わない。
論文 参考訳(メタデータ) (2023-12-06T07:33:22Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - Causal Dynamics Learning for Task-Independent State Abstraction [61.707048209272884]
タスク独立状態抽象化(CDL)のための因果ダイナミクス学習を導入する。
CDLは、状態変数とアクションの間の不要な依存関係を取り除く理論的に証明された因果ダイナミクスモデルを学ぶ。
状態抽象化は、学習されたダイナミクスから導き出すことができる。
論文 参考訳(メタデータ) (2022-06-27T17:02:53Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
複雑なシステム力学の離散時間シミュレーション表現を学習する可能性について検討する。
この結果から,本アルゴリズムは,意味のあるイベントを持つ複数のフィールドにおいて,複雑なネットワークダイナミクスをデータ効率よくキャプチャできることがわかった。
論文 参考訳(メタデータ) (2022-05-04T21:33:56Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
本稿では,体積変形可能なオブジェクトに対する動作条件の視覚力学モデルであるACIDを紹介する。
ベンチマークには17,000以上のアクション・トラジェクトリー、6種類のぬいぐるみと78種類の変種が含まれている。
我々のモデルは、幾何学、対応、力学の予測において最高の性能を達成する。
論文 参考訳(メタデータ) (2022-03-14T04:56:55Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
逆強化学習問題として交通シミュレーションを定式化する。
動的ロバストシミュレーション学習のためのパラメータ共有逆強化学習モデルを提案する。
提案モデルでは,実世界の車両の軌道を模倣し,同時に報酬関数を復元することができる。
論文 参考訳(メタデータ) (2021-05-20T07:26:34Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
グローバルなダイナミクスモデルを学習するタスクを,(a)ローカルなダイナミクスをキャプチャするコンテキスト潜在ベクトルを学習し,(b)次に条件付き状態を予測するという2つの段階に分割する。
本研究では,コンテキスト潜在ベクトルに動的情報をエンコードするために,コンテキスト潜在ベクトルを前方と後方の両方のダイナミクスを予測するのに役立つような新しい損失関数を導入する。
提案手法は,既存のRL方式と比較して,様々なシミュレーションロボットや制御タスクの一般化能力に優れる。
論文 参考訳(メタデータ) (2020-05-14T08:10:54Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
剛体力学のための微分可能な物理シミュレータを提案する。
軌道最適化の文脈では、閉ループモデル予測制御アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-22T03:54:00Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。