論文の概要: AgentDynEx: Nudging the Mechanics and Dynamics of Multi-Agent Simulations
- arxiv url: http://arxiv.org/abs/2504.09662v1
- Date: Sun, 13 Apr 2025 17:26:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:49:26.105828
- Title: AgentDynEx: Nudging the Mechanics and Dynamics of Multi-Agent Simulations
- Title(参考訳): AgentDynEx:マルチエージェントシミュレーションの力学とダイナミクス
- Authors: Jenny Ma, Riya Sahni, Karthik Sreedhar, Lydia B. Chilton,
- Abstract要約: 本稿では,AgentDynExを提案する。AgentDynExは,ユーザ特定力学とダイナミクスのシミュレーション構築を支援するAIシステムである。
ある技術的評価では、ヌードを使わずにシミュレーションがより複雑な力学を持ち、その顕著なダイナミクスを維持することができることがわかった。
- 参考スコア(独自算出の注目度): 12.492232195149661
- License:
- Abstract: Multi-agent large language model simulations have the potential to model complex human behaviors and interactions. If the mechanics are set up properly, unanticipated and valuable social dynamics can surface. However, it is challenging to consistently enforce simulation mechanics while still allowing for notable and emergent dynamics. We present AgentDynEx, an AI system that helps set up simulations from user-specified mechanics and dynamics. AgentDynEx uses LLMs to guide users through a Configuration Matrix to identify core mechanics and define milestones to track dynamics. It also introduces a method called \textit{nudging}, where the system dynamically reflects on simulation progress and gently intervenes if it begins to deviate from intended outcomes. A technical evaluation found that nudging enables simulations to have more complex mechanics and maintain its notable dynamics compared to simulations without nudging. We discuss the importance of nudging as a technique for balancing mechanics and dynamics of multi-agent simulations.
- Abstract(参考訳): 多エージェント大規模言語モデルシミュレーションは、複雑な人間の行動や相互作用をモデル化する可能性がある。
機械が適切に設定されている場合、予期せぬ価値ある社会的ダイナミクスが表面化します。
しかし、シミュレーション力学を一貫して実施することは困難であり、なおも顕著かつ創発的な力学を許容している。
本稿では,AgentDynExを提案する。AgentDynExは,ユーザ特定力学とダイナミクスのシミュレーション構築を支援するAIシステムである。
AgentDynExはLLMを使用してユーザをConfiguration Matrixを通じてガイドし、コアメカを識別し、ダイナミックスを追跡するマイルストーンを定義する。
また、システムがシミュレーションの進捗を動的に反映し、意図された結果から逸脱し始めると、優しく介入する「textit{nudging}」という手法も導入されている。
ある技術的評価では、ヌードを使わずにシミュレーションがより複雑な力学を持ち、その顕著なダイナミクスを維持することができることがわかった。
マルチエージェントシミュレーションの力学と力学のバランスをとる手法としてヌージングの重要性を論じる。
関連論文リスト
- GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体を表すCenter of Mass System (CMS)として扱う。
さらに、ガウスシムは質量や運動量保存のような明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
シミュレーションで学んだ政策を現実世界に伝達することは、ロボットのスキルを大規模に獲得する上で有望な戦略である。
本稿では,Large Language Models (LLMs) を用いてシム・トゥ・リアル設計の自動化と高速化を行う。
本手法では,ヨガボールの上を歩行する四足歩行や四足歩行など,新しいロボットタスクを解くことができる。
論文 参考訳(メタデータ) (2024-06-04T04:53:05Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
本研究では,BALLUロボットのシステム識別による制御ポリシのロバストなシミュレートを実演する。
標準的な教師あり学習の定式化に頼るのではなく、深層強化学習を利用して外部力政策を訓練する。
シミュレーショントラジェクトリと実世界のトラジェクトリを比較することで,改良されたシミュレーション忠実度を解析する。
論文 参考訳(メタデータ) (2023-03-16T18:49:05Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
ロボット工学では、第一原理から導かれた力学モデルに基づくシミュレーションに基づいて、トレーニングデータを生成する方法がある。
ここでは、力学の複雑さの不均衡を利用して、より標本効率のよい学習を行う。
提案手法をいくつかの課題に対して検証し,既存の近視アルゴリズムと組み合わせた場合の学習改善を実証する。
論文 参考訳(メタデータ) (2023-03-03T21:55:04Z) - Inferring Articulated Rigid Body Dynamics from RGBD Video [18.154013621342266]
我々は,逆レンダリングと微分可能なシミュレーションを組み合わせるパイプラインを導入し,実世界の調音機構のディジタルツインを作成する。
本手法はロボットが操作する関節機構のキネマティックツリーを正確に再構築する。
論文 参考訳(メタデータ) (2022-03-20T08:19:02Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - DiffSRL: Learning Dynamic-aware State Representation for Deformable
Object Control with Differentiable Simulator [26.280021036447213]
ダイナミックス関連情報をキャプチャできる潜在空間は、モデルフリー強化学習の加速のような分野に広く応用されている。
微分可能シミュレーションを利用した動的状態表現学習パイプラインDiffSRLを提案する。
本モデルでは,長期的ダイナミクスと報奨予測の両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-24T04:53:58Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。