論文の概要: Kernelized Heterogeneous Risk Minimization
- arxiv url: http://arxiv.org/abs/2110.12425v1
- Date: Sun, 24 Oct 2021 12:26:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 16:50:40.441574
- Title: Kernelized Heterogeneous Risk Minimization
- Title(参考訳): カーネル化不均一リスク最小化
- Authors: Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen
- Abstract要約: 我々はカーネル空間における潜伏探索と不変学習の両方を実現するカーネル化不均一リスク最小化(KerHRM)アルゴリズムを提案する。
理論的にアルゴリズムを正当化し、広範囲な実験でアルゴリズムの有効性を実証的に検証する。
- 参考スコア(独自算出の注目度): 25.5458915855661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to generalize under distributional shifts is essential to
reliable machine learning, while models optimized with empirical risk
minimization usually fail on non-$i.i.d$ testing data. Recently, invariant
learning methods for out-of-distribution (OOD) generalization propose to find
causally invariant relationships with multi-environments. However, modern
datasets are frequently multi-sourced without explicit source labels, rendering
many invariant learning methods inapplicable. In this paper, we propose
Kernelized Heterogeneous Risk Minimization (KerHRM) algorithm, which achieves
both the latent heterogeneity exploration and invariant learning in kernel
space, and then gives feedback to the original neural network by appointing
invariant gradient direction. We theoretically justify our algorithm and
empirically validate the effectiveness of our algorithm with extensive
experiments.
- Abstract(参考訳): 分散シフトの下で一般化する能力は、信頼できる機械学習に不可欠であるが、経験的リスク最小化に最適化されたモデルは、通常、非i.i.d$テストデータで失敗する。
近年,out-of-distribution(ood)一般化のための不変学習法が提案されている。
しかし、現代のデータセットは明示的なソースラベルなしで頻繁にマルチソースされ、多くの不変学習方法が適用できない。
本稿では,カーネル空間における潜在異質性探索と不変学習の両方を実現し,不変勾配方向を割り当てて元のニューラルネットワークにフィードバックを与えるカーネル化異種リスク最小化(kerhrm)アルゴリズムを提案する。
我々は理論的にアルゴリズムを正当化し,広範な実験によりアルゴリズムの有効性を実証的に検証する。
関連論文リスト
- The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing [9.551225697705199]
本稿では,不均一なデータに対するグラディエント・ディキセント(SGD)の暗黙バイアスについて検討し,その暗黙バイアスがモデル学習を不変解へと導くことを示す。
具体的には、各環境において、信号が(i)全環境間で共有される低ランク不変部分と(ii)環境依存のスプリアス成分とを含む多環境低ランク行列センシング問題について理論的に検討する。
重要な洞察は、明示的な正規化を伴わずに各環境で大きなステップサイズの大バッチSGDを逐次使用するだけで、不均一性に起因する振動は、モデル学習の急激なシグナルを確実に阻止することができることである。
論文 参考訳(メタデータ) (2024-03-03T07:38:24Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
本稿では,分散シフトに対する不変性とロバスト性を示す分子表現を学習するための新しい枠組みを提案する。
我々のモデルは、様々な分布シフトが存在する場合に、最先端のベースラインに対してより強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-10-22T04:06:44Z) - Environment Diversification with Multi-head Neural Network for Invariant
Learning [7.255121332331688]
この研究は、データバイアスを吸収するマルチヘッドニューラルネットワークを含む不変学習フレームワークEDNILを提案する。
このフレームワークは環境に関する事前の知識や事前訓練されたモデルに関する強い仮定を必要としないことを示す。
EDNILでトレーニングされたモデルは、分布シフトに対して実験的に堅牢であることを示す。
論文 参考訳(メタデータ) (2023-08-17T04:33:38Z) - Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient
Methods [73.35353358543507]
SGDA(Gradient Descent-Ascent)は、min-max最適化と変分不等式問題(VIP)を解くための最も顕著なアルゴリズムの1つである。
本稿では,多種多様な降下指数法を網羅した統合収束解析を提案する。
本研究では,新しい分散化手法 (L-SVRGDA) や,新しい分散圧縮方式 (QSGDA, DIANA-SGDA, VR-DIANA-SGDA) ,座標ランダム化方式 (SEGA-SGDA) など,SGDAの新しい変種を開発した。
論文 参考訳(メタデータ) (2022-02-15T09:17:39Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - OoD-Bench: Benchmarking and Understanding Out-of-Distribution
Generalization Datasets and Algorithms [28.37021464780398]
1つの分布シフトにおいて経験的リスク最小化よりも優れた既存のOoDアルゴリズムは、通常、他の分布シフトに制限があることを示す。
新しいベンチマークは、将来のOoD一般化研究で活用できる強力な基盤として機能する可能性がある。
論文 参考訳(メタデータ) (2021-06-07T15:34:36Z) - Heterogeneous Risk Minimization [25.5458915855661]
分散一般化のための不変学習法は、複数の学習環境を利用して不変関係を見つけることによって提案されている。
現代のデータセットは、明示的なソースラベルなしで複数のソースからのデータをマージすることで組み立てられる。
不均一リスク最小化(HRM: Heterogeneous Risk Minimization)フレームワークを提案し、データと不変関係間の潜在不均質性の共同学習を実現する。
論文 参考訳(メタデータ) (2021-05-09T02:51:36Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
不変リスク最小化(Invariant Risk Minimization)は、データの深い不変性を学ぶという考え方に基づく目標である。
我々は、IRMの目的に基づく分類の最初の分析と、最近提案されたこれらの代替案について、かなり自然で一般的なモデルで分析する。
IRMは、テストデータがトレーニング分布と十分に類似していない限り、破滅的に失敗する可能性がある。
論文 参考訳(メタデータ) (2020-10-12T14:54:32Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Invariant Risk Minimization Games [48.00018458720443]
本研究では,複数の環境においてアンサンブルゲームのナッシュ平衡を求めるような不変リスク最小化を行う。
そこで我々は,本実験における最適応答力学と平衡を用いた簡単なトレーニングアルゴリズムを開発し,Arjovskyらの難解な二段階最適化問題よりもはるかに低いばらつきで,同様の,あるいは優れた経験的精度が得られることを示した。
論文 参考訳(メタデータ) (2020-02-11T21:25:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。