論文の概要: Estimating Total Lung Volume from Pixel-level Thickness Maps of Chest Radiographs Using Deep Learning
- arxiv url: http://arxiv.org/abs/2110.12509v6
- Date: Wed, 04 Jun 2025 17:05:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 00:00:16.97908
- Title: Estimating Total Lung Volume from Pixel-level Thickness Maps of Chest Radiographs Using Deep Learning
- Title(参考訳): 深層学習を用いた胸部X線画像の画素レベルの厚さ図による肺総容積の推定
- Authors: Tina Dorosti, Manuel Schultheiss, Philipp Schmette, Jule Heuchert, Johannes Thalhammer, Florian T. Gassert, Thorsten Sellerer, Rafael Schick, Kirsten Taphorn, Korbinian Mechlem, Lorenz Birnbacher, Florian Schaff, Franz Pfeiffer, Daniela Pfeiffer,
- Abstract要約: U-Net深層学習モデルを用いて, 胸部X線写真(CXR)と胸部X線写真(CXR)の総肺体積(TLV)を推定した。
平均二乗誤差 (MSE) , ピアソン相関係数 (r) , および両側学生のt分布を用いてモデル性能を評価した。
- 参考スコア(独自算出の注目度): 4.494514977138964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Purpose: To estimate the total lung volume (TLV) from real and synthetic frontal chest radiographs (CXR) on a pixel level using lung thickness maps generated by a U-Net deep learning model. Methods: This retrospective study included 5,959 chest CT scans from two public datasets: the lung nodule analysis 2016 (n=656) and the Radiological Society of North America (RSNA) pulmonary embolism detection challenge 2020 (n=5,303). Additionally, 72 participants were selected from the Klinikum Rechts der Isar dataset (October 2018 to December 2019), each with a corresponding chest radiograph taken within seven days. Synthetic radiographs and lung thickness maps were generated using forward projection of CT scans and their lung segmentations. A U-Net model was trained on synthetic radiographs to predict lung thickness maps and estimate TLV. Model performance was assessed using mean squared error (MSE), Pearson correlation coefficient (r), and two-sided Student's t-distribution. Results: The study included 72 participants (45 male, 27 female, 33 healthy: mean age 62 years [range 34-80]; 39 with chronic obstructive pulmonary disease: mean age 69 years [range 47-91]). TLV predictions showed low error rates ($MSE_{Public-Synthetic}$=0.16 $L^2$, $MSE_{KRI-Synthetic}$=0.20 $L^2$, $MSE_{KRI-Real}$=0.35 $L^2$) and strong correlations with CT-derived reference standard TLV ($n_{Public-Synthetic}$=1,191, r=0.99, P<0.001; $n_{KRI-Synthetic}$=72, r=0.97, P<0.001; $n_{KRI-Real}$=72, r=0.91, P<0.001). The Luna16 test data demonstrated the highest performance, with the lowest mean squared error (MSE = 0.09 $L^2$) and strongest correlation (r = 0.99, P <0.001) for TLV estimation. Conclusion: The U-Net-generated pixel-level lung thickness maps successfully estimated TLV for both synthetic and real radiographs.
- Abstract(参考訳): 目的:U-Net深層学習モデルにより生成された肺の厚みマップを用いて,実および合成前頭胸部X線写真(CXR)から肺総容積(TLV)を画素レベルで推定する。
方法: この振り返り調査では、肺結節分析2016(n=656)と北米放射線学会(RSNA)の肺塞栓症検出チャレンジ2020(n=5,303)の2つの公開データセットから5,959個の胸部CTスキャンを行った。
さらに、Klinikum Rechts der Isarデータセット(2018年10月から2019年12月)から72人の参加者が選ばれ、7日以内に対応する胸部X線写真が撮影された。
合成X線写真と肺厚図はCTスキャンの前方投影と肺分画を用いて作成した。
U-Netモデルは、肺の厚さマップとTLVを推定するために合成ラジオグラフィーで訓練された。
平均二乗誤差 (MSE) , ピアソン相関係数 (r) , および両側学生のt分布を用いてモデル性能を評価した。
結果: 対象は72名(男性45名,女性27名,健常33名,平均62歳(34~80名),慢性閉塞性肺疾患39名,平均69歳(47~91名)であった。
TLV予測は低エラー率(MSE_{Public-Synthetic}$=0.16 $L^2$, $MSE_{KRI-Synthetic}$=0.20 $L^2$, $MSE_{KRI-Real}$=0.35 $L^2$)を示し、CT由来の基準基準TLV$=1,191, r=0.99, P<0.001; $n_{KRI-Synthetic}$=72, r=0.97, P<0.001; $n_{KRI-Real}$=72, r=0.91, P<0.001)と強い相関を示した。
Luna16試験データでは,平均二乗誤差 (MSE = 0.09 $L^2$) と最強相関 (r = 0.99, P <0.001) をTLV推定に用いた。
結語:U-Netで生成されたピクセルレベルの肺の厚さマップは、合成と実の両方でTLVを推定することに成功した。
関連論文リスト
- Ultrasound Lung Aeration Map via Physics-Aware Neural Operators [78.6077820217471]
肺超音波は、急性肺疾患や慢性肺疾患を診断するクリニックにおいて増加するモダリティである。
超音波による空気透過性の低下に起因する胸膜界面からの複雑な逆流によって複雑になる。
RFデータから肺エアレーションマップを直接再構成するAIモデルLUNAを提案する。
論文 参考訳(メタデータ) (2025-01-02T09:24:34Z) - BeyondCT: A deep learning model for predicting pulmonary function from chest CT scans [2.602923751641061]
BeyondCT モデルは,非造影胸部CT から1秒間 (FEV1) の強制活量および強制呼気量を予測するために開発された。
肺機能予測には非造影胸部CT検査が有用であった。
論文 参考訳(メタデータ) (2024-08-10T22:28:02Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans [29.266579630983358]
パンデミック時代には、専門家の放射線学者による新型コロナウイルスの肺病変の視覚的評価と定量化が高価になり、エラーが生じる傾向にある。
専門医に注釈を付された82例のCT画像433点を含むオープンアクセス型COVID-19 CTセグメンテーションデータセットについて紹介する。
Deep Neural Network(DNN)ベースのフレームワークであるCOVID-Rateは、胸部CTスキャンからCOVID-19に関連する肺の異常を自律的に分離する。
論文 参考訳(メタデータ) (2021-07-04T03:19:43Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Automated Estimation of Total Lung Volume using Chest Radiographs and
Deep Learning [4.874501619350224]
総肺量は重要な定量的バイオマーカーであり、制限肺疾患の評価に使用されます。
このデータセットは、胸部X線写真から肺総量を予測するディープラーニングアーキテクチャのトレーニングに使用された。
今回我々は,最先端のディープラーニングソリューションが胸部x線写真から肺総量を正確に測定できることを初めて実証した。
論文 参考訳(メタデータ) (2021-05-03T21:35:16Z) - Deep Learning to Quantify Pulmonary Edema in Chest Radiographs [7.121765928263759]
肺浮腫の重症度を胸部X線写真で分類する機械学習モデルを開発した。
深層学習モデルは、大きな胸部X線写真データセットで訓練された。
論文 参考訳(メタデータ) (2020-08-13T15:45:44Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Improving performance of CNN to predict likelihood of COVID-19 using
chest X-ray images with preprocessing algorithms [0.3180570080674292]
本研究は,胸部X線画像のコンピュータ支援診断手法の開発の可能性を示した。
8,474個の胸部X線画像のデータセットを使用して、CNNベースのCADスキームをトレーニングし、テストする。
検査結果は、3つのクラスを分類する際の総合的精度の94.0%、コビッドウイルスの感染者を検出する際の精度の98.6%を達成している。
論文 参考訳(メタデータ) (2020-06-11T16:45:46Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
提案法は,非造影胸部CTを入力として,病変,肺,葉を3次元に分割する。
この方法では、肺の重症度と葉の関与度を2つの組み合わせて測定し、COVID-19の異常度と高不透明度の存在度を定量化する。
このアルゴリズムの評価は、カナダ、ヨーロッパ、米国からの200人の参加者(感染者100人、健康管理100人)のCTで報告されている。
論文 参考訳(メタデータ) (2020-04-02T21:49:14Z) - Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using
Quantitative Features from Chest CT Images [54.919022945740515]
本研究の目的は,胸部CT画像に基づく新型コロナウイルスの重症度自動評価(非重症度または重症度)を実現することである。
ランダム・フォレスト(RF)モデルは、量的特徴に基づいて重症度(非重症度または重症度)を評価するために訓練される。
新型コロナウイルスの重症度を反映する可能性のあるいくつかの定量的特徴が明らかになった。
論文 参考訳(メタデータ) (2020-03-26T15:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。