A generic approach to the quantum mechanical transition probability
- URL: http://arxiv.org/abs/2110.12754v2
- Date: Wed, 13 Apr 2022 12:48:19 GMT
- Title: A generic approach to the quantum mechanical transition probability
- Authors: Gerd Niestegge
- Abstract summary: In quantum theory, the inner product of two normalized Hilbert space elements is to be interpreted as the transition probability between the pure states represented by these elements.
A very general version of the quantum no-cloning theorem, creating promising new opportunities for quantum cryptography is presented.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In quantum theory, the modulus-square of the inner product of two normalized
Hilbert space elements is to be interpreted as the transition probability
between the pure states represented by these elements. A probabilistically
motivated and more general definition of this transition probability was
introduced in a preceding paper and is extended here to a general type of
quantum logics: the orthomodular partially ordered sets. A very general version
of the quantum no-cloning theorem, creating promising new opportunities for
quantum cryptography, is presented and an interesting relationship between the
transition probability and Jordan algebras is highlighted.
Related papers
- Quantum Probability Geometrically Realized in Projective Space [0.0]
This paper aims to pass all quantum probability formulas to the projective space associated to the complex Hilbert space of a given quantum system.
The upshot is that quantum theory is the probability theory of projective subspaces, or equivalently, of quantum events.
arXiv Detail & Related papers (2024-10-23T20:29:15Z) - On the applicability of Kolmogorov's theory of probability to the description of quantum phenomena. Part I [0.0]
I show that it is possible to construct a mathematically rigorous theory based on Kolmogorov's axioms and physically natural random variables.
The approach can in principle be adapted to other classes of quantum-mechanical models.
arXiv Detail & Related papers (2024-05-09T12:11:28Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Biorthogonal resource theory of genuine quantum superposition [0.0]
We introduce a pseudo-Hermitian representation of the density operator, wherein its diagonal elements correspond to biorthogonal extensions of Kirkwood-Dirac quasi-probabilities.
This representation provides a unified framework for the inter-basis quantum superposition and basis state indistinguishability, giving rise to what we term as textitgenuine quantum superposition.
arXiv Detail & Related papers (2022-10-05T17:17:37Z) - Quantum Supermaps are Characterized by Locality [0.6445605125467572]
We provide a new characterisation of quantum supermaps in terms of an axiom that refers only to sequential and parallel composition.
We do so by providing a simple definition of locally-applicable transformation on a monoidal category.
In our main technical contribution, we use this diagrammatic representation to show that locally-applicable transformations on quantum channels are in one-to-one correspondence with deterministic quantum supermaps.
arXiv Detail & Related papers (2022-05-19T20:36:33Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Stochastic emulation of quantum algorithms [0.0]
We introduce higher-order partial derivatives of a probability distribution of particle positions as a new object that shares basic properties of quantum mechanical states needed for a quantum algorithm.
We prove that the propagation via the map built from those universal maps reproduces up to a prefactor exactly the evolution of the quantum mechanical state.
We implement several well-known quantum algorithms, analyse the scaling of the needed number of realizations with the number of qubits, and highlight the role of destructive interference for the cost of emulation.
arXiv Detail & Related papers (2021-09-16T07:54:31Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.