論文の概要: Variational Gaussian Processes: A Functional Analysis View
- arxiv url: http://arxiv.org/abs/2110.12798v1
- Date: Mon, 25 Oct 2021 10:54:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 00:24:02.551953
- Title: Variational Gaussian Processes: A Functional Analysis View
- Title(参考訳): 変分ガウス過程:機能解析の視点
- Authors: Veit Wild and George Wynne
- Abstract要約: 我々は、GPをバナッハ空間に横たわると見なし、統一的な視点を促進することを提案する。
これは、既存の特徴間の関係を理解し、カーネルリッジ回帰と変分GP近似の間の接続を描画するために使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Gaussian process (GP) approximations have become a standard tool
in fast GP inference. This technique requires a user to select variational
features to increase efficiency. So far the common choices in the literature
are disparate and lacking generality. We propose to view the GP as lying in a
Banach space which then facilitates a unified perspective. This is used to
understand the relationship between existing features and to draw a connection
between kernel ridge regression and variational GP approximations.
- Abstract(参考訳): 変分ガウス過程(GP)近似は高速GP推論における標準ツールとなっている。
このテクニックでは、ユーザは効率を高めるために変動特性を選択する必要がある。
これまでのところ、文学における一般的な選択は異なっており、一般性に欠ける。
我々は、GPをバナッハ空間に横たわると見なし、統一的な視点を促進することを提案する。
これは、既存の特徴間の関係を理解し、カーネルリッジ回帰と変分gp近似の関係を描くために使われる。
関連論文リスト
- Amortized Variational Inference for Deep Gaussian Processes [0.0]
ディープガウス過程(DGP)はガウス過程(GP)の多層一般化である
本稿では,DGPに対して,各観測を変動パラメータにマッピングする推論関数を学習するアモータライズされた変分推論を導入する。
本手法は, 計算コストの低い従来の手法よりも, 同様に, あるいはより優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-18T20:23:27Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - A mixed-categorical correlation kernel for Gaussian process [0.0]
本稿では, 連続指数関数型カーネルを拡張し, 混合カテゴリー変数の処理を行うカーネルベースアプローチを提案する。
提案したカーネルは、連続緩和とゴーワー距離に基づくGPモデルの両方を一般化する新しいGPサロゲートを導く。
論文 参考訳(メタデータ) (2022-11-15T16:13:04Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
GPの非パラメトリックプロセス畳み込み定式化を導入し,機能サンプリング手法を用いて弱点を緩和する。
古典的ディープGPモデルの代替となるこれらの非パラメトリック畳み込みの合成を提案する。
論文 参考訳(メタデータ) (2022-06-17T19:03:04Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
シャッフルに基づく変種(ミニバッチと局所ランダムリシャッフル)について検討する。
ポリアック・ロジャシエヴィチ条件を満たす滑らかな函数に対して、これらのシャッフル型不変量(英語版)(shuffling-based variants)がそれらの置換式よりも早く収束することを示す収束境界を得る。
我々は, 同期シャッフル法と呼ばれるアルゴリズムの修正を提案し, ほぼ均一な条件下では, 下界よりも収束速度が速くなった。
論文 参考訳(メタデータ) (2021-10-20T02:25:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - A Tutorial on Sparse Gaussian Processes and Variational Inference [12.827024991969578]
このチュートリアルは、GPとVIの両方で事前の知識のない読者に基本的な事項へのアクセスを提供する。
このフレームワークは、非ガウス的および非ガウス的確率の回帰から、離散ラベルによる分類問題まで、教師付き学習問題の幅広い範囲を自然に扱うことができる。
論文 参考訳(メタデータ) (2020-12-27T15:25:13Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。