Parallel Gate Operations Fidelity in a Linear Array of Flip-Flop Qubits
- URL: http://arxiv.org/abs/2110.12982v1
- Date: Mon, 25 Oct 2021 14:15:47 GMT
- Title: Parallel Gate Operations Fidelity in a Linear Array of Flip-Flop Qubits
- Authors: Davide Rei, Elena Ferraro and Marco De Michielis
- Abstract summary: Quantum computers based on silicon are promising candidates for long term universal quantum computation.
Flip-flop qubit is a donor based qubit (DQ) where interactions between qubits are achievable for distance up to several hundred nanometers.
In this work, a linear array of flip-flop qubits is considered and the unwanted mutual qubit interactions due to the simultaneous application of two one-qubit and two two-qubit gates are included in the quantum gate simulations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers based on silicon are promising candidates for long term
universal quantum computation due to the long coherence times of electron and
nuclear spin states. Furthermore, the continuous progress of micro- and nano-
electronics, also related to the scaling of Metal-Oxide-Semiconductor (MOS)
systems, makes possible to control the displacement of single dopants thus
suggesting their exploitation as qubit holders. Flip-flop qubit is a donor
based qubit (DQ) where interactions between qubits are achievable for distance
up to several hundred nanometers. In this work, a linear array of flip-flop
qubits is considered and the unwanted mutual qubit interactions due to the
simultaneous application of two one-qubit and two two-qubit gates are included
in the quantum gate simulations. In particular, by studying the parallel
execution of couples of one-qubit gates, namely Rz(-pi/2) and Rx(-pi/2), and of
couples of two-qubit gate, i.e. \sqrt{iSWAP}, a safe inter-qubit distance is
found where unwanted qubit interactions are negligible thus leading to parallel
gates fidelity up to 99.9%.
Related papers
- A diverse set of two-qubit gates for spin qubits in semiconductor quantum dots [5.228819198411081]
We propose and verify a fast composite two-qubit gate scheme to extend the available two-qubit gate types.
Our gate scheme limits the parameter requirements of all essential two-qubit gates to a common JDeltaE_Z region.
With this versatile composite gate scheme, broad-spectrum two-qubit operations allow us to efficiently utilize the hardware and the underlying physics resources.
arXiv Detail & Related papers (2024-04-29T13:37:43Z) - Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Pairwise-parallel entangling gates on orthogonal modes in a trapped-ion
chain [0.0]
parallel operations are important for both near-term quantum computers and larger-scale fault-tolerant machines.
We propose and implement a pairwise-parallel gate scheme on a trapped-ion quantum computer.
We demonstrate the utility of this scheme by creating a GHZ state in one step using parallel gates with one overlapping qubit.
arXiv Detail & Related papers (2023-02-17T21:12:14Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Crosstalk analysis for simultaneously driven two-qubit gates in spin
qubit arrays [0.0]
Crosstalk errors are caused by control operations on neighboring qubits.
We analyse the impact of crosstalk drives on qubit operations, such as the CNOT and CPHASE gates.
To minimize crosstalk errors, we develop appropriate control protocols.
arXiv Detail & Related papers (2021-11-19T12:04:32Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Parallel entangling gate operations and two-way quantum communication in
spin chains [0.0]
We propose a protocol to parallelize the implementation of two-qubit entangling gates.
The proposed protocol can serve for realizing two-way quantum communication.
arXiv Detail & Related papers (2020-08-28T17:50:38Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.