論文の概要: On Learning Prediction-Focused Mixtures
- arxiv url: http://arxiv.org/abs/2110.13221v2
- Date: Wed, 27 Oct 2021 19:11:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-31 13:44:23.312830
- Title: On Learning Prediction-Focused Mixtures
- Title(参考訳): 学習予測-焦点混合について
- Authors: Abhishek Sharma, Catherine Zeng, Sanjana Narayanan, Sonali Parbhoo and
Finale Doshi-Velez
- Abstract要約: 本稿では、予測タスクに関連する次元を自動的に選択する混合物の予測中心モデルを提案する。
提案手法は,入力からの関連信号を特定し,予測に焦点を絞らず,最適化が容易なモデルより優れている。
- 参考スコア(独自算出の注目度): 30.338543175315507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic models help us encode latent structures that both model the
data and are ideally also useful for specific downstream tasks. Among these,
mixture models and their time-series counterparts, hidden Markov models,
identify discrete components in the data. In this work, we focus on a
constrained capacity setting, where we want to learn a model with relatively
few components (e.g. for interpretability purposes). To maintain prediction
performance, we introduce prediction-focused modeling for mixtures, which
automatically selects the dimensions relevant to the prediction task. Our
approach identifies relevant signal from the input, outperforms models that are
not prediction-focused, and is easy to optimize; we also characterize when
prediction-focused modeling can be expected to work.
- Abstract(参考訳): 確率的モデルは、データモデリングと理想的には特定の下流タスクに有用な遅延構造をエンコードするのに役立ちます。
これらのうち、混合モデルとその時系列モデル、隠れマルコフモデルは、データの個々のコンポーネントを識別する。
本研究では、比較的少数のコンポーネント(解釈可能性の目的など)でモデルを学習したいという制約付きキャパシティ設定に焦点を当てる。
予測性能を維持するために,予測タスクに関連する次元を自動的に選択する混合モデルを提案する。
提案手法は,入力からの関連信号を特定し,予測に焦点を絞らず,最適化が容易なモデルより優れており,予測に焦点を絞ったモデルが機能することが期待できる場合にも特徴付ける。
関連論文リスト
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Decomposing and Editing Predictions by Modeling Model Computation [75.37535202884463]
コンポーネントモデリングというタスクを導入します。
コンポーネントモデリングの目標は、MLモデルの予測をコンポーネントの観点から分解することだ。
コンポーネント属性を推定するスケーラブルなアルゴリズムであるCOARを提案する。
論文 参考訳(メタデータ) (2024-04-17T16:28:08Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - A performance characteristic curve for model evaluation: the application
in information diffusion prediction [3.8711489380602804]
拡散データ中のランダム性を定量化するために,情報エントロピーに基づくメトリクスを提案し,モデルのランダム性と予測精度の間のスケーリングパターンを同定する。
異なるシーケンス長、システムサイズ、ランダム性によるパターンのデータポイントは、すべて単一の曲線に崩壊し、正しい予測を行うモデル固有の能力を取得する。
曲線の妥当性は、同じ家系の3つの予測モデルによって検証され、既存の研究と一致して結論に達する。
論文 参考訳(メタデータ) (2023-09-18T07:32:57Z) - EAMDrift: An interpretable self retrain model for time series [0.0]
EAMDrift(EAMDrift)は、複数の個人予測器から予測を合成し、性能指標に従って予測を重み付けする新しい手法である。
EAMDriftはデータのアウト・オブ・ディストリビューションパターンに自動的に適応し、各瞬間に使用する最も適切なモデルを特定するように設計されている。
本研究は,EAMDriftが個々のベースラインモデルより20%優れ,非解釈可能なアンサンブルモデルに匹敵する精度が得られることを示す。
論文 参考訳(メタデータ) (2023-05-31T13:25:26Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Learning Consistent Deep Generative Models from Sparse Data via
Prediction Constraints [16.48824312904122]
我々は変分オートエンコーダやその他の深層生成モデルを学ぶための新しいフレームワークを開発する。
これら2つのコントリビューション -- 予測制約と一貫性制約 -- が,画像分類性能の有望な向上につながることを示す。
論文 参考訳(メタデータ) (2020-12-12T04:18:50Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - Supervised learning from noisy observations: Combining machine-learning
techniques with data assimilation [0.6091702876917281]
本稿では,予測モデルと固有不確かさを,入射雑音観測と最適に組み合わせる方法について述べる。
得られた予測モデルは、訓練後、計算的に安価であると同時に、極めて優れた予測能力を有することを示す。
本手法は,予測タスクを超えて,確率的予測のための信頼性の高いアンサンブルを生成するとともに,マルチスケールシステムにおける効果的なモデルクロージャを学習するためにも有効であることを示す。
論文 参考訳(メタデータ) (2020-07-14T22:29:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。