論文の概要: Learning Optimal Decision Trees Using MaxSAT
- arxiv url: http://arxiv.org/abs/2110.13854v1
- Date: Tue, 26 Oct 2021 16:57:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 13:46:03.008511
- Title: Learning Optimal Decision Trees Using MaxSAT
- Title(参考訳): MaxSAT を用いた最適決定木学習
- Authors: Josep Alos, Carlos Ansotegui, Eduard Torres
- Abstract要約: 我々は,MPDTを計算するための従来の実行時アプローチにおいて,我々のアプローチが明らかに優れていることを示す。
私たちのアプローチは、解釈可能性と精度のバランスをとるという課題に取り組みます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a Combinatorial Optimization approach based on Maximum
Satisfiability technology to compute Minimum Pure Decision Trees (MPDTs) for
the sake of interpretability. We show that our approach outperforms clearly in
terms of runtime previous approaches to compute MPDTs. We additionally show
that these MPDTs can outperform on average the DT classifiers generated with
sklearn in terms of accuracy. Therefore, our approach tackles favourably the
challenge of balancing interpretability and accuracy.
- Abstract(参考訳): 本稿では, 最小決定木(mpdts)を計算するための最大充足可能性技術に基づく組合せ最適化手法を提案する。
我々は,MPDTを計算するための従来の実行時アプローチにおいて,我々のアプローチが明らかに優れていることを示す。
また,これらのMPDTはスケルンで生成したDT分類器の平均値よりも精度が高いことを示す。
したがって,本手法は解釈可能性と精度のバランスをとるという課題に対処する。
関連論文リスト
- Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment [0.0]
Monte Carlo Tree Search (MCTS) は複雑な意思決定問題を解決する強力なアルゴリズムである。
本稿では,古典的強化学習課題であるFrozenLake環境に適用したMCTS実装を提案する。
論文 参考訳(メタデータ) (2024-09-25T05:04:53Z) - An Efficient Solution to s-Rectangular Robust Markov Decision Processes [49.05403412954533]
テクスツ長方形ロバストマルコフ決定過程(MDP)に対する効率的なロバストな値反復法を提案する。
我々は,L_p$の水充填補題を用いて,ベルマン作用素を具体的形式で導出した。
最適な政策の正確な形を明らかにし、これは、その利点に比例する行動を起こす確率で、新しいしきい値ポリシーであることが判明した。
論文 参考訳(メタデータ) (2023-01-31T13:54:23Z) - Optimal Decision Tree Policies for Markov Decision Processes [7.995360025953931]
マルコフ決定過程(MPD)におけるサイズ制限決定木の最適化について検討する。
これは、模倣学習の固有の欠点、すなわち、複雑なポリシーが、サイズ制限木を使って表現できないことによるものである。
一般的に、機械学習モデルの性能と解釈可能性の間にはトレードオフがあるが、OMDTは3の深さに制限され、しばしば最適限に近い性能を示す。
論文 参考訳(メタデータ) (2023-01-30T18:51:02Z) - Selection of the Most Probable Best [2.1095005405219815]
予測値ランキングと選択(R&S)問題では,すべてのk解のシミュレーション出力が,分布によって不確実性をモデル化可能な共通パラメータに依存する。
我々は、最も確率の高い最適解 (MPB) を、分布に関して最適である確率が最も大きい解と定義する。
最適化条件における未知の手段をその推定値に置き換えるアルゴリズムを考案し,シミュレーション予算が増加するにつれて,アルゴリズムのサンプリング比が条件を満たすことを証明した。
論文 参考訳(メタデータ) (2022-07-15T15:27:27Z) - Max-Margin Contrastive Learning [120.32963353348674]
教師なし表現学習のためのMMCL(max-margin contrastive learning)を提案する。
提案手法は2次最適化問題を用いて得られたスパース支持ベクトルとして負を選択する。
我々は、標準ビジョンベンチマークデータセットに対するアプローチを検証し、教師なし表現学習におけるより良い性能を示す。
論文 参考訳(メタデータ) (2021-12-21T18:56:54Z) - Robust Optimal Classification Trees Against Adversarial Examples [5.254093731341154]
本稿では,ユーザが特定した攻撃モデルに対して最適に堅牢な決定木を訓練する手法の集合を提案する。
逆学習において生じるmin-max最適化問題は、単一最小化定式化を用いて解くことができることを示す。
また,両部マッチングを用いた任意のモデルに対して,上界の対角精度を決定する手法を提案する。
論文 参考訳(メタデータ) (2021-09-08T18:10:49Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
我々は、強化学習を通して解決された逐次決定問題(MDP)の文脈における予測列最適化フレームワークについて検討した。
2つの重要な計算課題は、意思決定中心の学習をMDPに適用することである。
論文 参考訳(メタデータ) (2021-06-06T23:53:31Z) - Strong Optimal Classification Trees [8.10995244893652]
最適二分分類木を学習するための直感的なフローベースMIO定式化を提案する。
我々の定式化は、解釈可能かつ公平な決定木の設計を可能にするために、サイド制約を満たすことができる。
提案手法は最先端MIO技術よりも29倍高速であることを示す。
論文 参考訳(メタデータ) (2021-03-29T21:40:58Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Stochastic Optimization Forests [60.523606291705214]
標準的なランダムな森林アルゴリズムのように予測精度を向上させるために分割するのではなく、分割を選択した木を栽培し、下流の意思決定品質を直接最適化することで、森林決定政策の訓練方法を示す。
概略分割基準は、各候補分割に対して正確に最適化された森林アルゴリズムに近い性能を保ちながら、100倍のランニング時間を短縮できることを示す。
論文 参考訳(メタデータ) (2020-08-17T16:56:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。