Temporal Clustering with External Memory Network for Disease Progression
Modeling
- URL: http://arxiv.org/abs/2109.14147v1
- Date: Wed, 29 Sep 2021 02:32:06 GMT
- Title: Temporal Clustering with External Memory Network for Disease Progression
Modeling
- Authors: Zicong Zhang, Changchang Yin, Ping Zhang
- Abstract summary: Disease progression modeling (DPM) involves using mathematical frameworks to quantitatively measure the severity of how certain disease progresses.
DPM is useful in many ways such as predicting health state, categorizing disease stages, and assessing patients disease trajectory etc.
- Score: 8.015263440307631
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Disease progression modeling (DPM) involves using mathematical frameworks to
quantitatively measure the severity of how certain disease progresses. DPM is
useful in many ways such as predicting health state, categorizing disease
stages, and assessing patients disease trajectory etc. Recently, with wider
availability of electronic health records (EHR) and the broad application of
data-driven machine learning method, DPM has attracted much attention yet
remains two major challenges: (i) Due to the existence of irregularity,
heterogeneity and long-term dependency in EHRs, most existing DPM methods might
not be able to provide comprehensive patient representations. (ii) Lots of
records in EHRs might be irrelevant to the target disease. Most existing models
learn to automatically focus on the relevant information instead of explicitly
capture the target-relevant events, which might make the learned model
suboptimal. To address these two issues, we propose Temporal Clustering with
External Memory Network (TC-EMNet) for DPM that groups patients with similar
trajectories to form disease clusters/stages. TC-EMNet uses a variational
autoencoder (VAE) to capture internal complexity from the input data and
utilizes an external memory work to capture long term distance information,
both of which are helpful for producing comprehensive patient states. Last but
not least, k-means algorithm is adopted to cluster the extracted comprehensive
patient states to capture disease progression. Experiments on two real-world
datasets show that our model demonstrates competitive clustering performance
against state-of-the-art methods and is able to identify clinically meaningful
clusters. The visualization of the extracted patient states shows that the
proposed model can generate better patient states than the baselines.
Related papers
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
We show that the model achieves on-par performance with strong fully supervised baseline models.
We also observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains.
arXiv Detail & Related papers (2024-11-04T12:24:33Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Predicting multiple sclerosis disease severity with multimodal deep
neural networks [10.599189568556508]
We describe a pilot effort to leverage structured EHR data, neuroimaging data and clinical notes to build a multi-modal deep learning framework to predict patient's MS disease severity.
The proposed pipeline demonstrates up to 25% increase in terms of the area under the Area Under the Receiver Operating Characteristic curve (AUROC) compared to models using single-modal data.
arXiv Detail & Related papers (2023-04-08T16:23:18Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
We propose a novel COntinuous patient state PERceiver model, called COPER, to cope with irregular time-series in EHRs.
neural ordinary differential equations (ODEs) help COPER to generate regular time-series to feed to Perceiver model.
To evaluate the performance of the proposed model, we use in-hospital mortality prediction task on MIMIC-III dataset.
arXiv Detail & Related papers (2022-08-05T14:32:57Z) - Efficient Learning and Decoding of the Continuous-Time Hidden Markov
Model for Disease Progression Modeling [119.50438407358862]
We present the first complete characterization of efficient EM-based learning methods for CT-HMM models.
We show that EM-based learning consists of two challenges: the estimation of posterior state probabilities and the computation of end-state conditioned statistics.
We demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease progression using a glaucoma dataset and an Alzheimer's disease dataset.
arXiv Detail & Related papers (2021-10-26T20:06:05Z) - Temporal Cascade and Structural Modelling of EHRs for Granular
Readmission Prediction [10.943928059802174]
We propose a novel model, MEDCAS, to model temporal cascade relationships.
MEDCAS integrates point processes in modelling visit types and time gaps into an attention-based sequence-to-sequence learning model.
Experiments on three real-world EHR datasets have been performed and the results demonstrate ttexttMEDCAS outperforms state-of-the-art models in both tasks.
arXiv Detail & Related papers (2021-02-04T13:02:04Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.