論文の概要: ODMTCNet: An Interpretable Multi-view Deep Neural Network Architecture
for Image Feature Representation
- arxiv url: http://arxiv.org/abs/2110.14830v1
- Date: Thu, 28 Oct 2021 00:35:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 15:27:57.828665
- Title: ODMTCNet: An Interpretable Multi-view Deep Neural Network Architecture
for Image Feature Representation
- Title(参考訳): ODMTCNet:画像特徴表現のための解釈可能な多視点ディープニューラルネットワークアーキテクチャ
- Authors: Lei Gao, Zheng Guo, Ling Guan
- Abstract要約: 本研究は,最適判別型多視点テンソルネットワーク(ODMTC)の解釈可能な多視点深層ニューラルネットワークアーキテクチャを提案する。
この研究は、統計機械学習(Net)の原則とディープニューラルネットワーク(DNN)アーキテクチャを統合する。
- 参考スコア(独自算出の注目度): 19.60093171975819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes an interpretable multi-view deep neural network
architecture, namely optimal discriminant multi-view tensor convolutional
network (ODMTCNet), by integrating statistical machine learning (SML)
principles with the deep neural network (DNN) architecture.
- Abstract(参考訳): 本研究では、統計的機械学習(SML)の原理とディープニューラルネットワーク(DNN)アーキテクチャを統合することにより、最適識別型マルチビューテンソル畳み込みネットワーク(ODMTCNet)を解釈可能なマルチビューディープニューラルネットワークアーキテクチャを提案する。
関連論文リスト
- Exploring Neural Network Pruning with Screening Methods [3.443622476405787]
現代のディープラーニングモデルは数千万のパラメータを持ち、推論プロセスはリソース集約化されている。
本稿では,非必須パラメータを除去するネットワーク・プルーニング・フレームワークの提案と評価を行う。
提案するフレームワークは,従来のネットワークと比較して,競争力のあるリーンネットワークを生成する。
論文 参考訳(メタデータ) (2025-02-11T02:31:04Z) - An Analysis Framework for Understanding Deep Neural Networks Based on Network Dynamics [11.44947569206928]
ディープニューラルネットワーク(DNN)は、ディープ層にまたがる異なるモードのニューロンの割合を合理的に割り当てることで、情報抽出を最大化する。
このフレームワークは、"フラット・ミニマ効果(flat minima effect)"、"グロッキング(grokking)"、二重降下現象(double descend phenomena)など、基本的なDNNの振る舞いについて統一的な説明を提供する。
論文 参考訳(メタデータ) (2025-01-05T04:23:21Z) - Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
スパースコーディングとディープラーニングの交差点を探索し,特徴抽出能力の理解を深める。
我々は、畳み込みニューラルネットワーク(CNN)のスパース特徴抽出能力の収束率を導出する。
スパースコーディングとCNNの強いつながりにインスパイアされた私たちは、ニューラルネットワークがよりスパースな機能を学ぶように促すトレーニング戦略を探求する。
論文 参考訳(メタデータ) (2024-08-10T12:43:55Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
コントラスト学習とマルチスケールグラフ畳み込みネットワーク(IcicleGCN)を用いた画像クラスタリング手法を提案する。
複数の画像データセットの実験は、最先端のIcicleGCNよりも優れたクラスタリング性能を示している。
論文 参考訳(メタデータ) (2022-07-14T19:16:56Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
我々は,多タスクニューラルネットワークにおける分岐構造を自動的に定義する,微分可能なニューラルネットワーク探索に根ざした原理的アプローチを提案する。
本手法は,限られた資源予算内で高い性能の分岐構造を見いだすことができる。
論文 参考訳(メタデータ) (2020-08-24T09:49:19Z) - On the Empirical Neural Tangent Kernel of Standard Finite-Width
Convolutional Neural Network Architectures [3.4698840925433765]
NTK理論が実際に一般的な幅の標準的なニューラルネットワークアーキテクチャをいかにうまくモデル化するかは、まだ明らかな疑問である。
我々はこの疑問を、AlexNetとLeNetという2つのよく知られた畳み込みニューラルネットワークアーキテクチャに対して実証的に研究する。
これらのネットワークのより広いバージョンでは、完全に接続されたレイヤのチャネル数や幅が増加すると、偏差は減少する。
論文 参考訳(メタデータ) (2020-06-24T11:40:36Z) - Deep Multimodal Neural Architecture Search [178.35131768344246]
様々なマルチモーダル学習タスクのための一般化された深層マルチモーダルニューラルアーキテクチャサーチ(MMnas)フレームワークを考案する。
マルチモーダル入力が与えられたら、まずプリミティブ演算のセットを定義し、その後、ディープエンコーダ-デコーダベースの統一バックボーンを構築する。
統合されたバックボーンの上にタスク固有のヘッドをアタッチして、異なるマルチモーダル学習タスクに取り組む。
論文 参考訳(メタデータ) (2020-04-25T07:00:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。