Decoherent Histories Quantum Mechanics and Copenhagen Quantum Mechanics
- URL: http://arxiv.org/abs/2110.15471v1
- Date: Fri, 29 Oct 2021 00:18:50 GMT
- Title: Decoherent Histories Quantum Mechanics and Copenhagen Quantum Mechanics
- Authors: Murray Gell-Mann and James B Hartle
- Abstract summary: We show how the a classical world used in such formulations is not to something to be postulated but rather explained by suitable sets of alternative histories of quasiclassical variables.
We discuss the general definition of measurement, the collapse of the wave function, and irreversibility from the perspective of decoherent histories quantum theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper discusses the relation between the decoherent histories approach
to quantum mechanics that is based on coarse-grained decoherent histories of a
closed system, and the approximate quantum mechanics of measured subsystems, as
in the Copenhagen interpretation. We show how the a classical world used in
such formulations is not to something to be postulated but rather explained by
suitable sets of alternative histories of quasiclassical variables. We discuss
the general definition of measurement, the collapse of the wave function, and
irreversibility from the perspective of decoherent histories quantum theory..
Related papers
- Observation of Quantum Darwinism and the Origin of Classicality with Superconducting Circuits [9.09683951826704]
How can we rationalize everyday classical observations from an inherently quantum world?
Quantum Darwinism offers a compelling framework to explain this emergence of classicality.
We observe the highly structured branching quantum states that support classicality and the saturation of quantum mutual information.
arXiv Detail & Related papers (2025-04-01T13:33:32Z) - Classical Mechanics as an Emergent Compression of Quantum Information [0.0]
Correspondence principle states that classical mechanics emerges from quantum mechanics in the appropriate limits.
Quantum mechanics encodes significantly more information through superposition, entanglement, and phase coherence.
We argue that classical mechanics is a lossy, computationally reduced encoding of quantum physics, emerging from a systematic loss of quantum correlations.
arXiv Detail & Related papers (2025-03-09T00:51:55Z) - Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.
We show that no such simulation exists, thereby certifying quantum coherence.
Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Probing quantum chaos with the entropy of decoherent histories [0.0]
Quantum chaos, a phenomenon that began to be studied in the last century, still does not have a rigorous understanding.
We propose the quantum chaos definition in the manner similar to the classical one using decoherent histories as a quantum analogue of trajectories.
We show that for such a model, the production of entropy of decoherent histories is radically different in integrable and chaotic regimes.
arXiv Detail & Related papers (2023-07-17T21:57:05Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Species of spaces [0.0]
The accent is put in situations where traces of noncommutativity, witness of an emblematic feature of quantum mechanise.
Complex canonical transformations, spin-statistics, topological quantum fields theory, long time semiclassical approximation and underlying chaotic dynamics are considered.
arXiv Detail & Related papers (2022-06-28T12:00:51Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Gravity, Quantum Fields and Quantum Information: Problems with classical
channel and stochastic theories [0.0]
We show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory.
Second, we point out that in general one cannot replace a quantum field by that of classical sources, or mock up the effects of quantum fluctuations by classical noises.
arXiv Detail & Related papers (2022-02-06T14:55:46Z) - Discord and Decoherence [0.0]
We investigate how quantum discord is modified by a quantum-to-classical transition.
We find that the evolution of quantum discord in presence of an environment is a competition between the growth of the squeezing amplitude and the decrease of the state purity.
arXiv Detail & Related papers (2021-12-09T17:01:54Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Hamiltonian point of view of quantum perturbation theory [0.0]
We explore the relation of Van Vleck-Primas perturbation theory of quantum mechanics with the Lie-series-based perturbation theory of Hamiltonian systems in classical mechanics.
We show that for quantum systems with a finite-dimensional Hilbert space, the Van Vleck-Primas procedure can be recast exactly into a classical perturbation problem.
arXiv Detail & Related papers (2021-07-15T00:02:55Z) - Classical Physics and Hamiltonian Quantum Mechanics as Relics of the Big
Bang [0.0]
We discuss the origin of the "quasiclassical realm" of familiar experience and Hamiltonian quantum mechanics.
It is argued that these features of the universe are not general properties of quantum theory, but rather approximate features that are emergent after the Planck time.
arXiv Detail & Related papers (2021-03-15T17:42:46Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.