論文の概要: UDIS: Unsupervised Discovery of Bias in Deep Visual Recognition Models
- arxiv url: http://arxiv.org/abs/2110.15499v1
- Date: Fri, 29 Oct 2021 02:36:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-01 14:33:55.350015
- Title: UDIS: Unsupervised Discovery of Bias in Deep Visual Recognition Models
- Title(参考訳): UDIS:ディープビジュアル認識モデルにおけるバイアス発見の教師なし
- Authors: Arvindkumar Krishnakumar, Viraj Prabhu, Sruthi Sudhakar, Judy Hoffman
- Abstract要約: 深層学習モデルは、あるサブ集団の体系的な失敗につながることがあるデータから急激な相関を学習することが示されている。
本稿では,このような障害モードを解析・監視するための教師なしアルゴリズムUDISを提案する。
CelebA と MSCOCO データセット上で画像分類を訓練したモデルにおいて,UDIS による故障モードの同定の有効性を示す。
- 参考スコア(独自算出の注目度): 14.086066389856173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have been shown to learn spurious correlations from data
that sometimes lead to systematic failures for certain subpopulations. Prior
work has typically diagnosed this by crowdsourcing annotations for various
protected attributes and measuring performance, which is both expensive to
acquire and difficult to scale. In this work, we propose UDIS, an unsupervised
algorithm for surfacing and analyzing such failure modes. UDIS identifies
subpopulations via hierarchical clustering of dataset embeddings and surfaces
systematic failure modes by visualizing low performing clusters along with
their gradient-weighted class-activation maps. We show the effectiveness of
UDIS in identifying failure modes in models trained for image classification on
the CelebA and MSCOCO datasets.
- Abstract(参考訳): 深層学習モデルは、ある部分集団に対する体系的な失敗につながるデータから、散発的な相関を学習することが示されている。
先行研究は通常、さまざまな保護された属性に対するアノテーションをクラウドソーシングし、パフォーマンスを測定することでこれを診断している。
本研究では,このような障害モードの探索と解析のための教師なしアルゴリズムUDISを提案する。
UDISは、低パフォーマンスクラスタと勾配重み付けされたクラスアクティベーションマップを視覚化することにより、データセットの埋め込みと表面のシステマティック障害モードの階層的クラスタリングによるサブポピュレーションを識別する。
CelebA と MSCOCO データセットを用いた画像分類訓練モデルにおいて,UDIS による故障モードの同定の有効性を示す。
関連論文リスト
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Active anomaly detection based on deep one-class classification [9.904380236739398]
我々は,Deep SVDDにおけるアクティブラーニングの2つの重要な課題,すなわちクエリ戦略と半教師付きラーニング手法に対処する。
まず、単に異常を識別するのではなく、適応境界に従って不確実なサンプルを選択する。
第2に、ラベル付き正規データと異常データの両方を効果的に組み込むために、一級分類モデルの訓練にノイズコントラスト推定を適用した。
論文 参考訳(メタデータ) (2023-09-18T03:56:45Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - VAESim: A probabilistic approach for self-supervised prototype discovery [0.23624125155742057]
条件付き変分オートエンコーダに基づく画像階層化アーキテクチャを提案する。
我々は、連続した潜伏空間を用いて障害の連続を表現し、訓練中にクラスターを見つけ、画像/患者の成層に使用することができる。
本手法は,標準VAEに対して,分類タスクで測定されたkNN精度において,ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-25T17:55:31Z) - Distilling Model Failures as Directions in Latent Space [87.30726685335098]
本稿では,モデルの故障モードを自動的に抽出するスケーラブルな方法を提案する。
線形分類器を用いて一貫したエラーパターンを識別し、これらの障害モードを特徴空間内の方向として自然な表現を誘導する。
このフレームワークにより、トレーニングデータセット内の課題のあるサブポピュレーションを発見し、自動的にキャプションし、これらのサブポピュレーションにおけるモデルのパフォーマンスを改善することができることを示す。
論文 参考訳(メタデータ) (2022-06-29T16:35:24Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - on the effectiveness of generative adversarial network on anomaly
detection [1.6244541005112747]
GANは、実際のトレーニング分布を特定するために、これらのモデルのリッチなコンテキスト情報に依存している。
本稿では,自動エンコーダとGANを組み合わせた新しい教師なしモデルを提案する。
識別器の内部表現と生成器の視覚表現の線形結合と、オートエンコーダの符号化表現とを組み合わせて、提案した異常スコアを定義する。
論文 参考訳(メタデータ) (2021-12-31T16:35:47Z) - Holistic Guidance for Occluded Person Re-Identification [7.662745552551165]
実世界のビデオ監視アプリケーションでは、人物の再識別(ReID)は、閉塞や検出エラーの影響に悩まされる。
個人識別ラベルにのみ依存するHG(Holistic Guidance)手法を提案する。
提案手法は, 包括的(非包括的)標本と, 包括的(非包括的)標本の包括的(包括的)な距離(DCD)分布を一致させることにより, この問題に対処する。
これに加えて、共同生成-識別的バックボーンは、デノナイジングオートエンコーダで訓練され、システムが制御される。
論文 参考訳(メタデータ) (2021-04-13T21:50:29Z) - The Deep Radial Basis Function Data Descriptor (D-RBFDD) Network: A
One-Class Neural Network for Anomaly Detection [7.906608953906889]
異常検出は機械学習において難しい問題である。
放射状基底関数データ記述子(rbfdd)ネットワークは異常検出に有効なソリューションである。
本稿では,RBFDDネットワークを改良して深層一級分類器に変換する手法について検討する。
論文 参考訳(メタデータ) (2021-01-29T15:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。