論文の概要: Equiangular lines via matrix projection
- arxiv url: http://arxiv.org/abs/2110.15842v2
- Date: Mon, 20 Mar 2023 19:43:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 05:51:25.654199
- Title: Equiangular lines via matrix projection
- Title(参考訳): 行列投影による等角線
- Authors: Igor Balla
- Abstract要約: 1973年、Lemmens と Seidel は、角 $arccos(alpha)$ の等角線の最大数を $mathbbRr$ で決定する問題を提起した。
最近のブレークスルーはこの問題のほぼ完全な解決に繋がった。
本稿では,従来のアプローチを統一し,改善する上界を求める新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In 1973, Lemmens and Seidel posed the problem of determining the maximum
number of equiangular lines in $\mathbb{R}^r$ with angle $\arccos(\alpha)$ and
gave a partial answer in the regime $r \leq 1/\alpha^2 - 2$. At the other
extreme where $r$ is at least exponential in $1/\alpha$, recent breakthroughs
have led to an almost complete resolution of this problem. In this paper, we
introduce a new method for obtaining upper bounds which unifies and improves
upon previous approaches, thereby bridging the gap between the aforementioned
regimes, as well as significantly extending or improving all previously known
bounds when $r \geq 1/\alpha^2 - 2$. Our method is based on orthogonal
projection of matrices with respect to the Frobenius inner product and it also
yields the first extension of the Alon-Boppana theorem to dense graphs, with
equality for strongly regular graphs corresponding to $\binom{r+1}{2}$
equiangular lines in $\mathbb{R}^r$. Applications of our method in the complex
setting will be discussed as well.
- Abstract(参考訳): 1973年、lemmens と seidel は、角 $\arccos(\alpha)$ を持つ$\mathbb{r}^r$ の等角線の最大数を決定する問題を提起し、r \leq 1/\alpha^2 - 2$ というレジームにおいて部分的な答えを与えた。
一方、$r$が少なくとも1/alpha$で指数関数的である場合、最近のブレークスルーはこの問題のほぼ完全な解決につながった。
本稿では,従来のアプローチを統一し,改善する上界を得るための新しい手法を提案する。これにより,前述の政権間のギャップを埋めるとともに,$r \geq 1/\alpha^2 - 2$の場合に,既知境界をすべて拡張あるいは改善する。
この方法はフロベニウスの内積に対する行列の直交射影に基づいており、さらに、アロン・ボッパナの定理の高密度グラフへの最初の拡張をもたらし、$\mathbb{R}^r$における$\binom{r+1}{2}=等角線に対応する強い正則グラフに対する等式も得られる。
本手法の複雑な設定における応用についても考察する。
関連論文リスト
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
この問題は通信複雑性のランダム化を$Omega(frac1kcdot n2log|mathbbF|)$とする。
アプリケーションとして、$k$パスを持つ任意のストリーミングアルゴリズムに対して、$Omega(frac1kcdot n2log|mathbbF|)$スペースローバウンドを得る。
論文 参考訳(メタデータ) (2024-10-26T06:21:42Z) - Provable Acceleration of Nesterov's Accelerated Gradient for Rectangular Matrix Factorization and Linear Neural Networks [46.04785603483612]
我々はネステロフの加速勾配が複雑性$O(kappalogfrac1epsilon)$に達することを証明している。
特に,NAGが線形収束速度を加速できることを示す。
論文 参考訳(メタデータ) (2024-10-12T20:33:37Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning [10.690769339903941]
我々は、$Ax = b$という形式の線形系を解くための、新しい条件付き反復法のクラスを示す。
提案手法は,低ランクなNystr"om近似をスパースランダムスケッチを用いて$A$に構築することに基づいている。
我々は、我々の手法の収束が自然平均条件数$A$に依存することを証明し、Nystr"om近似のランクとして改善する。
論文 参考訳(メタデータ) (2024-05-09T15:53:43Z) - Fine-grained Analysis and Faster Algorithms for Iteratively Solving Linear Systems [9.30306458153248]
我々は、スペクトルテール条件数である$kappa_ell$を、システムを表す行列の最小特異値と$ell$2の比として定義する。
結果のいくつかの意味と$kappa_ell$の使用は、Conjugateメソッドのきめ細かい解析を直接改善することを含んでいる。
論文 参考訳(メタデータ) (2024-05-09T14:56:49Z) - Provably learning a multi-head attention layer [55.2904547651831]
マルチヘッドアテンション層は、従来のフィードフォワードモデルとは分離したトランスフォーマーアーキテクチャの重要な構成要素の1つである。
本研究では,ランダムな例から多面的注意層を実証的に学習する研究を開始する。
最悪の場合、$m$に対する指数的依存は避けられないことを示す。
論文 参考訳(メタデータ) (2024-02-06T15:39:09Z) - Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems [61.85150061213987]
一般化線形モデル (GLM) フレームワークを用いて, citelu2021low で提案した一般化低ランク行列帯域問題について検討する。
既存のアルゴリズムの計算不可能性と理論的制約を克服するため,まずG-ESTTフレームワークを提案する。
G-ESTT は $tildeO(sqrt(d_1+d_2)3/2Mr3/2T)$ bound of regret を達成でき、G-ESTS は $tildeO を達成できることを示す。
論文 参考訳(メタデータ) (2024-01-14T14:14:19Z) - Hardness of Low Rank Approximation of Entrywise Transformed Matrix
Products [9.661328973620531]
自然言語処理における高速アルゴリズムにインスパイアされ、エントリ変換された設定における低階近似について研究する。
我々は、平坦なスパースベクトルのレバレッジスコアの低境界に依存するStrong Exponential Time hypothesis (SETH) から、新しい還元を与える。
我々の低階アルゴリズムは行列ベクトルに依存しているため、我々の下限は、小さな行列に対してさえも$f(UV)W$は$Omega(n2-o(1))$時間を必要とすることを示すために拡張される。
論文 参考訳(メタデータ) (2023-11-03T14:56:24Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
リッジ回帰問題に対する1+varepsilon$近似解を計算するスケッチベース反復アルゴリズムを提案する。
また,このアルゴリズムがカーネルリッジ回帰の高速化に有効であることを示す。
論文 参考訳(メタデータ) (2022-04-13T22:18:47Z) - Variance-Aware Confidence Set: Variance-Dependent Bound for Linear
Bandits and Horizon-Free Bound for Linear Mixture MDP [76.94328400919836]
線形バンドイットと線形混合決定プロセス(mdp)に対する分散認識信頼セットの構築方法を示す。
線形バンドイットに対しては、$d を特徴次元とする$widetildeo(mathrmpoly(d)sqrt1 + sum_i=1ksigma_i2) が成り立つ。
線形混合 MDP に対し、$widetildeO(mathrmpoly(d)sqrtK)$ regret bound を得る。
論文 参考訳(メタデータ) (2021-01-29T18:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。