論文の概要: When Can We Solve the Weighted Low Rank Approximation Problem in Truly Subquadratic Time?
- arxiv url: http://arxiv.org/abs/2502.16912v1
- Date: Mon, 24 Feb 2025 07:18:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:56:03.496952
- Title: When Can We Solve the Weighted Low Rank Approximation Problem in Truly Subquadratic Time?
- Title(参考訳): 真四次時間における重み付き低ランク近似問題の解法はいつ可能か?
- Authors: Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song,
- Abstract要約: 目標は、2つの低ランク行列 (U, V in mathbbRn times k$) を見つけることで、$| W circ (U Vtop - A) |_F2$ のコストを最小化することである。
この研究では、もし$A$ と $W$ が高密度であっても、ほぼ線形な$n1+o(1) の時間で重み付けされた低ランク近似問題を解くことを望んでおり、ある体制が存在することを示す。
- 参考スコア(独自算出の注目度): 22.047262762274414
- License:
- Abstract: The weighted low-rank approximation problem is a fundamental numerical linear algebra problem and has many applications in machine learning. Given a $n \times n$ weight matrix $W$ and a $n \times n$ matrix $A$, the goal is to find two low-rank matrices $U, V \in \mathbb{R}^{n \times k}$ such that the cost of $\| W \circ (U V^\top - A) \|_F^2$ is minimized. Previous work has to pay $\Omega(n^2)$ time when matrices $A$ and $W$ are dense, e.g., having $\Omega(n^2)$ non-zero entries. In this work, we show that there is a certain regime, even if $A$ and $W$ are dense, we can still hope to solve the weighted low-rank approximation problem in almost linear $n^{1+o(1)}$ time.
- Abstract(参考訳): 重み付き低ランク近似問題は基本的な数値線形代数問題であり、機械学習に多くの応用がある。
a $n \times n$ weight matrix $W$ と a $n \times n$ matrix $A$ が与えられたとき、ゴールは、$U, V \in \mathbb{R}^{n \times k}$ の2つの低ランク行列を見つけ、$\| W \circ (U V^\top - A) \|_F^2$ のコストを最小化することである。
それまでの作業では、行列が$A$と$W$が密で、例えば、$Omega(n^2)$が$Omega(n^2)$ 0でないとき、$\Omega(n^2)$を支払う必要がある。
この研究では、もし$A$ と $W$ が濃厚であるとしても、ほぼ線形な $n^{1+o(1)} の時間で重み付けされた低ランク近似問題を解くことを期待できる、ある条件が存在することを示した。
関連論文リスト
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
この問題は通信複雑性のランダム化を$Omega(frac1kcdot n2log|mathbbF|)$とする。
アプリケーションとして、$k$パスを持つ任意のストリーミングアルゴリズムに対して、$Omega(frac1kcdot n2log|mathbbF|)$スペースローバウンドを得る。
論文 参考訳(メタデータ) (2024-10-26T06:21:42Z) - LevAttention: Time, Space, and Streaming Efficient Algorithm for Heavy Attentions [54.54897832889028]
任意の$K$に対して、$n$とは独立に「普遍集合」$Uサブセット[n]$が存在し、任意の$Q$と任意の行$i$に対して、大きな注目スコアが$A_i,j$ in row $i$ of $A$は全て$jin U$を持つことを示す。
我々は、視覚変換器のスキームの利点を実証的に示し、トレーニング中に我々の普遍的なセットを使用する新しいモデルのトレーニング方法を示した。
論文 参考訳(メタデータ) (2024-10-07T19:47:13Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Hardness of Low Rank Approximation of Entrywise Transformed Matrix
Products [9.661328973620531]
自然言語処理における高速アルゴリズムにインスパイアされ、エントリ変換された設定における低階近似について研究する。
我々は、平坦なスパースベクトルのレバレッジスコアの低境界に依存するStrong Exponential Time hypothesis (SETH) から、新しい還元を与える。
我々の低階アルゴリズムは行列ベクトルに依存しているため、我々の下限は、小さな行列に対してさえも$f(UV)W$は$Omega(n2-o(1))$時間を必要とすることを示すために拡張される。
論文 参考訳(メタデータ) (2023-11-03T14:56:24Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - Randomized and Deterministic Attention Sparsification Algorithms for
Over-parameterized Feature Dimension [18.57735939471469]
我々は注意問題のスパシフィケーションを考慮する。
超大規模特徴量の場合、文の長さをほぼ線形に縮めることができる。
論文 参考訳(メタデータ) (2023-04-10T05:52:38Z) - Solving Regularized Exp, Cosh and Sinh Regression Problems [40.47799094316649]
注意計算はTransformer、GPT-4、ChatGPTといった大規模言語モデルの基本的なタスクである。
素直な方法はニュートンの方法を使うことである。
論文 参考訳(メタデータ) (2023-03-28T04:26:51Z) - Fast Attention Requires Bounded Entries [19.17278873525312]
内部製品注意計算はTransformer, GPT-1, BERT, GPT-2, GPT-3, ChatGPTなどの大規模言語モデルを訓練するための基本的なタスクである。
行列を暗黙的に$A$とすることで、より高速なアルゴリズムが可能かどうかを検討する。
このことは、入力行列がより小さいエントリを持つ場合、注意計算の方がはるかに効率的である、実際に観察された現象の理論的な説明を与える。
論文 参考訳(メタデータ) (2023-02-26T02:42:39Z) - Learning a Latent Simplex in Input-Sparsity Time [58.30321592603066]
我々は、$AinmathbbRdtimes n$へのアクセスを考えると、潜入$k$-vertex simplex $KsubsetmathbbRdtimes n$を学習する問題を考える。
実行時間における$k$への依存は、トップ$k$特異値の質量が$a$であるという自然な仮定から不要であることを示す。
論文 参考訳(メタデータ) (2021-05-17T16:40:48Z) - Average Case Column Subset Selection for Entrywise $\ell_1$-Norm Loss [76.02734481158458]
最悪の場合、行列に対する良いランク-$k$近似を得るには、任意に大きい$nOmega(1)$列数が必要であることが知られている。
最小かつ現実的な分布設定では、ほぼ線形な実行時間を持つ$(k/epsilon)$-approximationとpoly$(k/epsilon)+O(klog n)$ columnsが得られる。
これは、エントリワイズで$(k/epsilon)$-approximationを達成するための任意の種類の最初のアルゴリズムである
論文 参考訳(メタデータ) (2020-04-16T22:57:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。