論文の概要: Optimal Compression of Locally Differentially Private Mechanisms
- arxiv url: http://arxiv.org/abs/2111.00092v1
- Date: Fri, 29 Oct 2021 21:36:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-02 17:11:23.510815
- Title: Optimal Compression of Locally Differentially Private Mechanisms
- Title(参考訳): 局所微分プライベート機構の最適圧縮
- Authors: Abhin Shah, Wei-Ning Chen, Johannes Balle, Peter Kairouz, Lucas Theis
- Abstract要約: 共有ランダムネスを用いてデータを共同で圧縮・民営化する手法の利点を実証する。
我々の理論的および実証的な結果は、我々のアプローチがPivUnit (Bhowmick et al., Coding and Subset Selection (Ye et al., the most known LDP algorithm for mean and frequency Estimation, to the order of communication, while Preserving their privacy and accuracy guarantees to the order of communication, to the order of epsilon-bits to the order of communication, to the order of epsilon-bits to the order of communication, to the order of the Epsilon-bits to the order of communication。
- 参考スコア(独自算出の注目度): 21.200464908282594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compressing the output of \epsilon-locally differentially private (LDP)
randomizers naively leads to suboptimal utility. In this work, we demonstrate
the benefits of using schemes that jointly compress and privatize the data
using shared randomness. In particular, we investigate a family of schemes
based on Minimal Random Coding (Havasi et al., 2019) and prove that they offer
optimal privacy-accuracy-communication tradeoffs. Our theoretical and empirical
findings show that our approach can compress PrivUnit (Bhowmick et al., 2018)
and Subset Selection (Ye et al., 2018), the best known LDP algorithms for mean
and frequency estimation, to to the order of \epsilon-bits of communication
while preserving their privacy and accuracy guarantees.
- Abstract(参考訳): epsilon-locally differentially private (ldp) ランダム化器の出力を圧縮すると、最善の用途がもたらされる。
本研究では,共有ランダム性を用いてデータを圧縮・民営化する方式を用いることの利点を実証する。
特に,最小のランダムコーディング(havasi et al., 2019)に基づくスキームのファミリーを調査し,最適なプライバシー・正確性・通信トレードオフを提供することを実証する。
提案手法は,プライバシと精度の保証を維持しつつ,平均および周波数推定のための最もよく知られたldpアルゴリズムであるprivunit (bhowmick et al., 2018) とサブセットセレクション (ye et al., 2018) を,\epsilonビットの通信順に圧縮できることを示す。
関連論文リスト
- CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
現代の機械学習アルゴリズムは、データからきめ細かい情報を抽出して正確な予測を提供することを目的としており、プライバシー保護の目標と矛盾することが多い。
本稿では、プライバシを保ちながら優れたパフォーマンスを確保するために、プライバシを保存する機械学習アルゴリズムを開発することの実践的および理論的重要性について論じる。
論文 参考訳(メタデータ) (2022-09-09T08:54:13Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Optimal Algorithms for Mean Estimation under Local Differential Privacy [55.32262879188817]
そこで本研究では,PrivUnitが局所的プライベートな乱数化器群間の最適分散を実現することを示す。
また,ガウス分布に基づくPrivUnitの新たな変種も開発しており,数学的解析に適しており,同じ最適性保証を享受できる。
論文 参考訳(メタデータ) (2022-05-05T06:43:46Z) - Differentially Private Federated Bayesian Optimization with Distributed
Exploration [48.9049546219643]
我々は、DPを反復アルゴリズムに追加するための一般的なフレームワークを通じて、ディープニューラルネットワークのトレーニングに差分プライバシ(DP)を導入する。
DP-FTS-DEは高い実用性(競争性能)と高いプライバシー保証を実現する。
また,DP-FTS-DEがプライバシとユーティリティのトレードオフを引き起こすことを示すために,実世界の実験も行っている。
論文 参考訳(メタデータ) (2021-10-27T04:11:06Z) - No-Regret Algorithms for Private Gaussian Process Bandit Optimization [13.660643701487002]
プライバシー保護統計のレンズによるガウス過程(GP)帯域最適化の至るところでの問題点を考察する。
均一なカーネル近似器とランダムな摂動を組み合わせた差分プライベートGPバンディット最適化のためのソリューションを提案する。
我々のアルゴリズムは最適化手順を通して微分プライバシを保持し、予測のためのサンプルパスに明示的に依存しない。
論文 参考訳(メタデータ) (2021-02-24T18:52:24Z) - Output Perturbation for Differentially Private Convex Optimization with
Improved Population Loss Bounds, Runtimes and Applications to Private
Adversarial Training [12.386462516398469]
強力な過剰なリスク境界を提供する効率的で実装が容易な差分プライベート(DP)アルゴリズムを見つけることは、現代の機械学習において重要な問題である。
我々は、滑らかさと強い凸性の存在下で、最もよく知られた$(epsilon, 0)$-DP人口損失境界と最速ランタイムを提供する。
我々はこの理論を2つの学習フレームワーク、傾きERMと逆学習フレームワークに適用する。
論文 参考訳(メタデータ) (2021-02-09T08:47:06Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
ランダムシャッフルは、局所的ランダム化データの差分プライバシー保証を増幅する。
私たちの結果は、以前の作業よりも単純で、ほぼ同じ保証で差分プライバシーに拡張された新しいアプローチに基づいています。
論文 参考訳(メタデータ) (2020-12-23T17:07:26Z) - Bounding, Concentrating, and Truncating: Unifying Privacy Loss
Composition for Data Analytics [2.614355818010333]
アナリストが純粋なDP、境界範囲(指数的なメカニズムなど)、集中的なDPメカニズムを任意の順序で選択できる場合、強いプライバシー損失バウンダリを提供する。
また、アナリストが純粋なDPと境界範囲のメカニズムをバッチで選択できる場合に適用される最適なプライバシー損失境界を提供する。
論文 参考訳(メタデータ) (2020-04-15T17:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。