A fast accurate fine-grain object detection model based on YOLOv4 deep
neural network
- URL: http://arxiv.org/abs/2111.00298v1
- Date: Sat, 30 Oct 2021 17:56:13 GMT
- Title: A fast accurate fine-grain object detection model based on YOLOv4 deep
neural network
- Authors: Arunabha M. Roy, Rikhi Bose and Jayabrata Bhaduri
- Abstract summary: Early identification and prevention of various plant diseases in commercial farms and orchards is a key feature of precision agriculture technology.
This paper presents a high-performance real-time fine-grain object detection framework that addresses several obstacles in plant disease detection.
The proposed model is built on an improved version of the You Only Look Once (YOLOv4) algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early identification and prevention of various plant diseases in commercial
farms and orchards is a key feature of precision agriculture technology. This
paper presents a high-performance real-time fine-grain object detection
framework that addresses several obstacles in plant disease detection that
hinder the performance of traditional methods, such as, dense distribution,
irregular morphology, multi-scale object classes, textural similarity, etc. The
proposed model is built on an improved version of the You Only Look Once
(YOLOv4) algorithm. The modified network architecture maximizes both detection
accuracy and speed by including the DenseNet in the back-bone to optimize
feature transfer and reuse, two new residual blocks in the backbone and neck
enhance feature extraction and reduce computing cost; the Spatial Pyramid
Pooling (SPP) enhances receptive field, and a modified Path Aggregation Network
(PANet) preserves fine-grain localized information and improve feature fusion.
Additionally, the use of the Hard-Swish function as the primary activation
improved the model's accuracy due to better nonlinear feature extraction. The
proposed model is tested in detecting four different diseases in tomato plants
under various challenging environments. The model outperforms the existing
state-of-the-art detection models in detection accuracy and speed. At a
detection rate of 70.19 FPS, the proposed model obtained a precision value of
$90.33 \%$, F1-score of $93.64 \%$, and a mean average precision ($mAP$) value
of $96.29 \%$. Current work provides an effective and efficient method for
detecting different plant diseases in complex scenarios that can be extended to
different fruit and crop detection, generic disease detection, and various
automated agricultural detection processes.
Related papers
- Small data deep learning methodology for in-field disease detection [6.2747249113031325]
We present the first machine learning model capable of detecting mild symptoms of late blight in potato crops.
Our proposal exploits the availability of high-resolution images via the concept of patching, and is based on deep convolutional neural networks with a focal loss function.
Our model correctly detects all cases of late blight in the test dataset, demonstrating a high level of accuracy and effectiveness in identifying early symptoms.
arXiv Detail & Related papers (2024-09-25T17:31:17Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - YOLO-pdd: A Novel Multi-scale PCB Defect Detection Method Using Deep Representations with Sequential Images [7.368447690189973]
This paper proposes a high-precision, robust, and real-time end-to-end method for PCB defect detection based on CNN.
We propose a novel approach combining YOLOv5 and multiscale modules for hierarchical residual-like connections.
Experiments on a large-scale PCB dataset demonstrate significant improvements in precision, recall, and F1-score compared to existing methods.
arXiv Detail & Related papers (2024-07-22T07:08:22Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Lightweight wood panel defect detection method incorporating attention
mechanism and feature fusion network [9.775181958901326]
We propose a lightweight wood panel defect detection method called YOLOv5-LW, which incorporates attention mechanisms and a feature fusion network.
The proposed method achieves a 92.8% accuracy rate, reduces the number of parameters by 27.78%, compresses computational volume by 41.25%, improves detection inference speed by 10.16%.
arXiv Detail & Related papers (2023-06-21T08:55:45Z) - A Computer Vision Enabled damage detection model with improved YOLOv5
based on Transformer Prediction Head [0.0]
Current state-of-the-art deep learning (DL)-based damage detection models often lack superior feature extraction capability in complex and noisy environments.
DenseSPH-YOLOv5 is a real-time DL-based high-performance damage detection model where DenseNet blocks have been integrated with the backbone.
DenseSPH-YOLOv5 obtains a mean average precision (mAP) value of 85.25 %, F1-score of 81.18 %, and precision (P) value of 89.51 % outperforming current state-of-the-art models.
arXiv Detail & Related papers (2023-03-07T22:53:36Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Improved YOLOv5 network for real-time multi-scale traffic sign detection [4.5598087061051755]
We propose an improved feature pyramid model, named AF-FPN, which utilize the adaptive attention module (AAM) and feature enhancement module (FEM) to reduce the information loss in the process of feature map generation.
We replace the original feature pyramid network in YOLOv5 with AF-FPN, which improves the detection performance for multi-scale targets of the YOLOv5 network.
arXiv Detail & Related papers (2021-12-16T11:02:12Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.