論文の概要: Token Trails: Navigating Contextual Depths in Conversational AI with ChatLLM
- arxiv url: http://arxiv.org/abs/2404.02402v1
- Date: Wed, 3 Apr 2024 02:11:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:49:24.896406
- Title: Token Trails: Navigating Contextual Depths in Conversational AI with ChatLLM
- Title(参考訳): Token Trails: ChatLLMによる会話型AIにおけるコンテキスト深さのナビゲート
- Authors: Md. Kowsher, Ritesh Panditi, Nusrat Jahan Prottasha, Prakash Bhat, Anupam Kumar Bairagi, Mohammad Shamsul Arefin,
- Abstract要約: Token Trailsは、トークンタイプの埋め込みを利用して会話内のコンテキストニュアンスをナビゲートする、新しいアプローチである。
本フレームワークはトークン型埋め込みを利用して,ユーザの発話とボット応答を区別し,コンテキスト認識応答の生成を容易にする。
- 参考スコア(独自算出の注目度): 0.5743699972363359
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational modeling using Large Language Models (LLMs) requires a nuanced understanding of context to generate coherent and contextually relevant responses. In this paper, we present Token Trails, a novel approach that leverages token-type embeddings to navigate the intricate contextual nuances within conversations. Our framework utilizes token-type embeddings to distinguish between user utterances and bot responses, facilitating the generation of context-aware replies. Through comprehensive experimentation and evaluation, we demonstrate the effectiveness of Token Trails in improving conversational understanding and response generation, achieving state-of-the-art performance. Our results highlight the significance of contextual modeling in conversational AI and underscore the promising potential of Token Trails to advance the field, paving the way for more sophisticated and contextually aware chatbot interactions.
- Abstract(参考訳): LLM(Large Language Models)を用いた会話モデリングでは、一貫性と文脈に関連のある応答を生成するために、コンテキストの微妙な理解が必要となる。
本稿ではトークン型埋め込みを利用して会話中の複雑な文脈ニュアンスをナビゲートする新しいアプローチであるToken Trailsを提案する。
本フレームワークはトークン型埋め込みを利用して,ユーザの発話とボット応答を区別し,コンテキスト認識応答の生成を容易にする。
総合的な実験と評価を通じて,会話理解と応答生成を改善し,最先端のパフォーマンスを達成する上でのToken Trailsの有効性を実証する。
この結果から,会話型AIにおけるコンテキストモデリングの重要性を強調し,Token Trailsの今後の可能性を明らかにするとともに,より洗練され,文脈的に認識されたチャットボットインタラクションの道を開いた。
関連論文リスト
- Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue [71.15186328127409]
パラリンGPT(Paralin GPT)
モデルは、シリアライズされたマルチタスクフレームワーク内の入力プロンプトとして、テキスト、音声埋め込み、およびパラ言語属性の会話コンテキストを取る。
音声対話データセットとして,感情ラベルをパラ言語属性として含むSwitchboard-1コーパスを利用する。
論文 参考訳(メタデータ) (2023-12-23T18:14:56Z) - Conversational Speech Recognition by Learning Audio-textual Cross-modal Contextual Representation [27.926862030684926]
クロスモーダルな会話表現を備えたコンフォーマーエンコーダデコーダモデルを拡張した会話型ASRシステムを提案する。
提案手法は、特殊エンコーダとモーダルレベルのマスク入力により、事前訓練された音声とテキストモデルを組み合わせる。
クロスモーダル表現と会話表現の両方をデコーダに導入することで、我々のモデルは情報損失のない長い文よりもコンテキストを保ちます。
論文 参考訳(メタデータ) (2023-10-22T11:57:33Z) - Context-Dependent Embedding Utterance Representations for Emotion
Recognition in Conversations [1.8126187844654875]
我々は会話の文脈を利用した会話における感情認識にアプローチする。
それぞれの発話の文脈依存的な埋め込み表現を提案する。
提案手法の有効性は,オープンドメインのDailyDialogデータセットとタスク指向のEmoWOZデータセットで検証される。
論文 参考訳(メタデータ) (2023-04-17T12:37:57Z) - Improve Retrieval-based Dialogue System via Syntax-Informed Attention [46.79601705850277]
文内構文情報と文間構文情報の両方を考慮したSIA, Syntax-Informed Attentionを提案する。
提案手法を広範に使用した3つのベンチマークで評価し,対話応答選択における本手法の一般的な優位性を示す実験結果を得た。
論文 参考訳(メタデータ) (2023-03-12T08:14:16Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
本稿では,PrLMの逐次文脈化を超えて,発話間の包括的相互作用のための合成学習を提案する。
私たちは、モデルが対話ドメインに適応するのを助けるために、ドメイン適応型トレーニング戦略を採用しています。
実験の結果,提案手法は4つの公開ベンチマークデータセットにおいて,強力なPrLMベースラインを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-01-10T13:18:25Z) - An Approach to Inference-Driven Dialogue Management within a Social
Chatbot [10.760026478889667]
会話を一連の応答生成タスクとしてフレーミングする代わりに、会話を協調推論プロセスとしてモデル化する。
私たちのパイプラインは、このモデリングを3つの幅広い段階で達成します。
このアプローチは、ユーザ入力の潜在意味論、フレキシブルなイニシアティブの取り方、対話コンテキストに新しく一貫性のある応答を理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-31T19:01:07Z) - Continuity of Topic, Interaction, and Query: Learning to Quote in Online
Conversations [23.214585012203084]
本研究は,オンライン会話における引用の自動生成について研究する。
引用でコンテキストを継続するために、エンコーダ-デコーダニューラルフレームワークが使用される。
英語と中国語の2つの大規模データセットの実験結果。
論文 参考訳(メタデータ) (2021-06-18T03:38:48Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Learning Reasoning Paths over Semantic Graphs for Video-grounded
Dialogues [73.04906599884868]
対話文脈(PDC)における推論経路の新しい枠組みを提案する。
PDCモデルは、各質問と回答の語彙成分に基づいて構築されたセマンティックグラフを通じて、対話間の情報フローを発見する。
本モデルでは,この推論経路を通じて視覚情報とテキスト情報を逐次的に処理し,提案する特徴を用いて回答を生成する。
論文 参考訳(メタデータ) (2021-03-01T07:39:26Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
マルチターンダイアログでは、発話が文の完全な形を取るとは限らない。
読み解きの質問に答えるモデルの能力を検討し、応答生成性能の向上を提案する。
論文 参考訳(メタデータ) (2020-12-14T10:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。