論文の概要: Redundancy Reduction in Semantic Segmentation of 3D Brain Tumor MRIs
- arxiv url: http://arxiv.org/abs/2111.00742v1
- Date: Mon, 1 Nov 2021 07:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 01:16:53.263802
- Title: Redundancy Reduction in Semantic Segmentation of 3D Brain Tumor MRIs
- Title(参考訳): 3次元脳腫瘍MRIのセマンティックセグメンテーションにおける冗長性の検討
- Authors: Md Mahfuzur Rahman Siddiquee, Andriy Myronenko
- Abstract要約: この研究は、摂動下での冗長性を最小化するネットワークトレーニングプロセスの修正である。
腫瘍コア, 腫瘍コア, 全腫瘍に対して, 0.8600, 0.8868, 0.9265平均ダイスを得た。
私たちのチーム(NVAUTO)の応募は、ETとTCのスコアで上位10チーム、WTのスコアで上位10チームだった。
- 参考スコア(独自算出の注目度): 2.946960157989204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Another year of the multimodal brain tumor segmentation challenge (BraTS)
2021 provides an even larger dataset to facilitate collaboration and research
of brain tumor segmentation methods, which are necessary for disease analysis
and treatment planning. A large dataset size of BraTS 2021 and the advent of
modern GPUs provide a better opportunity for deep-learning based approaches to
learn tumor representation from the data. In this work, we maintained an
encoder-decoder based segmentation network, but focused on a modification of
network training process that minimizes redundancy under perturbations. Given a
set trained networks, we further introduce a confidence based ensembling
techniques to further improve the performance. We evaluated the method on BraTS
2021 validation board, and achieved 0.8600, 0.8868 and 0.9265 average dice for
enhanced tumor core, tumor core and whole tumor, respectively. Our team
(NVAUTO) submission was the top performing in terms of ET and TC scores and
within top 10 performing teams in terms of WT scores.
- Abstract(参考訳): また、multimodal brain tumor segmentation challenge (brats) 2021ではさらに大きなデータセットを提供し、疾患の分析と治療計画に必要な脳腫瘍の分割方法の協力と研究を容易にする。
BraTS 2021の大規模なデータセットサイズと現代的なGPUの出現は、データから腫瘍表現を学ぶためのディープラーニングベースのアプローチによりよい機会を提供する。
本研究では,エンコーダ・デコーダに基づくセグメンテーションネットワークを維持しつつ,摂動下での冗長性を最小限に抑えるネットワークトレーニングプロセスの改良に焦点をあてた。
ネットワークが訓練された場合、信頼性に基づくアンサンブル技術を導入し、パフォーマンスをさらに向上する。
本手法をBraTS 2021検証ボード上で評価し, 腫瘍コア, 腫瘍コア, 腫瘍全体に対する平均ダイス0.8600, 0.8868, 0.9265を得た。
私たちのチーム(NVAUTO)の応募は、ETとTCのスコアで上位10チーム、WTのスコアで上位10チームだった。
関連論文リスト
- Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Lung-Originated Tumor Segmentation from Computed Tomography Scan (LOTUS)
Benchmark [48.30502612686276]
肺癌は最も致命的ながんの1つであり、その効果的な診断と治療は腫瘍の正確な悪性度に依存している。
現在最も一般的なアプローチであるHuman-centered segmentationは、サーバ間変動の対象となる。
2018年のVIPカップは、42か国から競争データにアクセスするための世界的な参加から始まった。
簡単に言えば、競争中に提案されたアルゴリズムはすべて、偽陽性還元手法と組み合わせたディープラーニングモデルに基づいている。
論文 参考訳(メタデータ) (2022-01-03T03:06:38Z) - Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric
MRI [0.0]
本稿では,術前の mpMRI におけるグリオーマの自動認識のための,DeepSeg と nnU-Net という2つのディープラーニングフレームワークのアグリゲーションを提案する。
本手法では, 腫瘍, 腫瘍コア, 全腫瘍領域のDice類似度スコアが92.00, 87.33, 84.10, Hausdorff Distances 3.81, 8.91, 16.02を得た。
論文 参考訳(メタデータ) (2021-12-13T10:51:20Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
U-netのようなニューラルネットワークを用いた脳腫瘍セグメント化作業の自動化と標準化を行う。
2つの独立したモデルのアンサンブルが訓練され、それぞれが脳腫瘍のセグメンテーションマップを作成した。
我々の解は、最終試験データセットにおいて、Diceの0.79、0.89、0.84、およびHausdorffの95%の20.4、6.7、19.5mmを達成した。
論文 参考訳(メタデータ) (2020-10-30T14:36:10Z) - Modality-Pairing Learning for Brain Tumor Segmentation [34.58078431696929]
そこで我々は,脳腫瘍セグメンテーションのための新しいエンド・ツー・エンドモダリティペアリング学習法を提案する。
提案手法はBraTS 2020オンラインテストデータセット上でテストされ,有望なセグメンテーション性能が得られた。
論文 参考訳(メタデータ) (2020-10-19T07:42:10Z) - Enhancing MRI Brain Tumor Segmentation with an Additional Classification
Network [0.0]
そこで本研究では,ネットワークに新たな分類分岐を追加することにより,セグメンテーション結果を向上する新たなトレーニング手法を提案する。
ネットワーク全体が、Multimodal Brain tumor Challenge (BraTS) 2020トレーニングデータセットでエンドツーエンドにトレーニングされた。
論文 参考訳(メタデータ) (2020-09-25T10:05:12Z) - Robust Semantic Segmentation of Brain Tumor Regions from 3D MRIs [2.4736005621421686]
マルチモーダル脳腫瘍セグメンテーションチャレンジ(BraTS)は、3次元MRI脳腫瘍セグメンテーションの自動化方法を改善するために研究者を結集させる。
この手法をBraTS 2019の課題として評価した。
論文 参考訳(メタデータ) (2020-01-06T07:47:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。