論文の概要: Interpretable and Explainable Machine Learning for Materials Science and
Chemistry
- arxiv url: http://arxiv.org/abs/2111.01037v1
- Date: Mon, 1 Nov 2021 15:40:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-02 19:02:58.222275
- Title: Interpretable and Explainable Machine Learning for Materials Science and
Chemistry
- Title(参考訳): 材料科学・化学のための解釈・説明可能な機械学習
- Authors: Felipe Oviedo, Juan Lavista Ferres, Tonio Buonassisi, Keith Butler
- Abstract要約: 材料科学・化学における解釈可能性および説明可能性技術の応用を概説する。
これらの技術が科学的研究の成果をどう改善するかを論じる。
- 参考スコア(独自算出の注目度): 2.2175470459999636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the uptake of data-driven approaches for materials science is at an
exciting, early stage, to realise the true potential of machine learning models
for successful scientific discovery, they must have qualities beyond purely
predictive power. The predictions and inner workings of models should provide a
certain degree of explainability by human experts, permitting the
identification of potential model issues or limitations, building trust on
model predictions and unveiling unexpected correlations that may lead to
scientific insights. In this work, we summarize applications of
interpretability and explainability techniques for materials science and
chemistry and discuss how these techniques can improve the outcome of
scientific studies.
- Abstract(参考訳): 材料科学におけるデータ駆動アプローチの普及は、科学的発見を成功させるための機械学習モデルの真の可能性を実現するための、エキサイティングな初期段階にあるが、それらは純粋に予測能力を超えた性質を持つ必要がある。
モデルの予測と内部動作は、人間の専門家によるある程度の説明可能性を提供し、潜在的なモデル問題や制限の特定を可能にし、モデル予測への信頼を築き、科学的洞察につながる予期せぬ相関を明らかにするべきである。
本稿では,材料科学・化学における解釈可能性・説明可能性技術の応用を概説し,これらの技術が科学研究の成果をどう改善するかを論じる。
関連論文リスト
- Probing the limitations of multimodal language models for chemistry and materials research [3.422786943576035]
実世界の化学や材料科学のタスクを視覚言語モデルがどのように扱うかを評価するためのベンチマークであるMaCBenchを紹介する。
これらのシステムは、基本的な知覚タスクにおいて有望な能力を示すが、空間的推論、クロスモーダル情報合成、論理的推論の基本的な限界を示す。
私たちの洞察は、化学や材料科学以外にも重要な意味を持ち、信頼性の高いマルチモーダルAI科学アシスタントを開発するには、適切なトレーニングデータとそれらのモデルをトレーニングするためのアプローチのキュレーションの進歩が必要であることを示唆している。
論文 参考訳(メタデータ) (2024-11-25T21:51:45Z) - Machine Learning with Physics Knowledge for Prediction: A Survey [16.96920919164813]
本研究では,機械学習と物理知識を組み合わせて予測と予測を行う手法とモデルについて検討する。
まず、目的関数、構造化予測モデル、データ拡張を通じて、アーキテクチャレベルでの物理知識を取り入れることを検討する。
第二に、データを物理知識とみなし、マルチタスク、メタ、コンテキスト学習をデータ駆動方式で物理知識を組み込む代替アプローチとして考える。
論文 参考訳(メタデータ) (2024-08-19T09:36:07Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Diverse Explanations From Data-Driven and Domain-Driven Perspectives in the Physical Sciences [4.442043151145212]
このパースペクティブは、物理科学における機械学習応用における多様な説明の源泉と意味を探求する。
モデル, 説明方法, 特徴属性レベル, 利害関係者のニーズが, ML出力の様々な解釈をもたらすかを検討する。
我々の分析は、科学的な文脈でMLモデルを解釈する際に、複数の視点を考慮することの重要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-01T05:28:28Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
大規模言語モデルがどのように科学的合成、推論、説明を行うことができるかを示す。
我々は,この「知識」を科学的文献から合成することで,大きな言語モデルによって強化できることを示す。
このアプローチは、大きな言語モデルが機械学習システムの予測を説明することができるというさらなる利点を持っている。
論文 参考訳(メタデータ) (2023-10-12T02:17:59Z) - Efficient Surrogate Models for Materials Science Simulations: Machine
Learning-based Prediction of Microstructure Properties [0.0]
いくつかの機械学習アルゴリズムがこれらの科学分野に応用され、シミュレーションモデルや代理モデルを強化し、加速している。
材料科学分野の2つの異なるデータセットに基づいて,6つの機械学習技術の応用について検討する。
論文 参考訳(メタデータ) (2023-09-01T07:29:44Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z) - Drug discovery with explainable artificial intelligence [0.0]
分子科学の機械言語の新しい物語の必要性に対処する「説明可能な」深層学習手法が求められている。
このレビューでは、説明可能な人工知能の最も顕著なアルゴリズム概念を要約し、将来の可能性、潜在的な応用、そして残る課題を予測している。
論文 参考訳(メタデータ) (2020-07-01T14:36:23Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
人間は、物体の物理的特性を直感的に認識し、複雑な相互作用に従事している場合でも、その動きを予測する。
我々は、物理を同時に推論し、視覚と力学の先行に基づく将来の予測を行うニューラルモデルを提案する。
実験により、我々のモデルはいくつかの観測範囲内で物理的特性を推測できることが示され、モデルが目に見えないシナリオに迅速に適応し、将来正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-04-28T17:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。